In mathematics, an inequality is a relation which makes a non-equal comparison between two numbers or other mathematical expressions. It is used most often to compare two numbers on the number line by their size. There are several different notations used to represent different kinds of inequalities: The notation a < b means that a is less than b. The notation a > b means that a is greater than b. In either case, a is not equal to b. These relations are known as strict inequalities, meaning that a is strictly less than or strictly greater than b. Equivalence is excluded. In contrast to strict inequalities, there are two types of inequality relations that are not strict: The notation a ≤ b or a ⩽ b means that a is less than or equal to b (or, equivalently, at most b, or not greater than b). The notation a ≥ b or a ⩾ b means that a is greater than or equal to b (or, equivalently, at least b, or not less than b). The relation not greater than can also be represented by a ≯ b, the symbol for "greater than" bisected by a slash, "not". The same is true for not less than and a ≮ b. The notation a ≠ b means that a is not equal to b; this inequation sometimes is considered a form of strict inequality. It does not say that one is greater than the other; it does not even require a and b to be member of an ordered set. In engineering sciences, less formal use of the notation is to state that one quantity is "much greater" than another, normally by several orders of magnitude. The notation a ≪ b means that a is much less than b. The notation a ≫ b means that a is much greater than b. This implies that the lesser value can be neglected with little effect on the accuracy of an approximation (such as the case of ultrarelativistic limit in physics). In all of the cases above, any two symbols mirroring each other are symmetrical; a < b and b > a are equivalent, etc. Inequalities are governed by the following properties.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (14)
MATH-230: Probability
Le cours est une introduction à la théorie des probabilités. Le but sera d'introduire le formalisme moderne (basé sur la notion de mesure), de lier celui-ci à l'aspect "intuitif" des probabilités mais
ME-454: Modelling and optimization of energy systems
The goal of the lecture is to present and apply techniques for the modelling and the thermo-economic optimisation of industrial process and energy systems. The lecture covers the problem statement, th
MATH-432: Probability theory
The course is based on Durrett's text book Probability: Theory and Examples.
It takes the measure theory approach to probability theory, wherein expectations are simply abstract integrals.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.