Wadsleyite is an orthorhombic mineral with the formula β-(Mg,Fe)2SiO4. It was first found in nature in the Peace River meteorite from Alberta, Canada. It is formed by a phase transformation from olivine (α-(Mg,Fe)2SiO4) under increasing pressure and eventually transforms into spinel-structured ringwoodite (γ-(Mg,Fe)2SiO4) as pressure increases further. The structure can take up a limited amount of other bivalent cations instead of magnesium, but contrary to the α and γ structures, a β structure with the sum formula Fe2SiO4 is not thermodynamically stable. Its cell parameters are approximately a = 5.7 Å, b = 11.71 Å and c = 8.24 Å.
Wadsleyite is found to be stable in the upper part of the Transition Zone of the Earth's mantle between in depth. Because of oxygen atoms not bound to silicon in the Si2O7 groups of wadsleyite, it leaves some oxygen atoms insufficiently bonded. Thus, these oxygens are hydrated easily, allowing for high concentrations of hydrogen atoms in the mineral. Hydrous wadsleyite is considered a potential site for water storage in the Earth's mantle due to the low electrostatic potential of the under bonded oxygen atoms. Although wadsleyite does not contain H in its chemical formula, it may contain more than 3 percent by weight H2O, and may coexist with a hydrous melt at transition zone pressure-temperature conditions. The solubility of water and the density of wadsleyite depend on the temperature and pressure in the Earth. Even though their maximum water storage capabilities might be reduced to about 0.5-1 wt% along the normal geotherm, the Transition Zone which holds up to 60 vol% wadsleyite could still be a major water reservoir in the Earth's interior. Furthermore, the transformation resulting in wadsleyite is thought to occur also in the shock event when a meteorite impacts the Earth or another planet at very high velocity.
Wadsleyite was first identified by Ringwood and Major in 1966 and was confirmed to be a stable phase by Akimoto and Sato in 1968. The phase was originally known as β-Mg2SiO4 or "beta-phase".
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Fayalite (Fe2SiO4, commonly abbreviated to Fa) is the iron-rich end-member of the olivine solid-solution series. In common with all minerals in the olivine group, fayalite crystallizes in the orthorhombic system (space group Pbnm) with cell parameters a 4.82 Å, b 10.48 Å and c 6.09 Å. Fayalite forms solid solution series with the magnesium olivine endmember forsterite (Mg2SiO4) and also with the manganese rich olivine endmember tephroite (Mn2SiO4).
Forsterite (Mg2SiO4; commonly abbreviated as Fo; also known as white olivine) is the magnesium-rich end-member of the olivine solid solution series. It is isomorphous with the iron-rich end-member, fayalite. Forsterite crystallizes in the orthorhombic system (space group Pbnm) with cell parameters a 4.75 Å (0.475 nm), b 10.20 Å (1.020 nm) and c 5.98 Å (0.598 nm). Forsterite is associated with igneous and metamorphic rocks and has also been found in meteorites. In 2005 it was also found in cometary dust returned by the Stardust probe.
The mineral olivine (ˈɒl.ᵻˌviːn) is a magnesium iron silicate with the chemical formula . It is a type of nesosilicate or orthosilicate. The primary component of the Earth's upper mantle, it is a common mineral in Earth's subsurface, but weathers quickly on the surface. For this reason, olivine has been proposed as a good candidate for accelerated weathering to sequester carbon dioxide from the Earth's oceans and atmosphere, as part of climate change mitigation.
Uranium (U) contamination of ground and surface waters poses an acute hazard on the ecosystem and human health. Since the discovery of microbial U(VI) reduction, U bioremediation has been explored as a promising and cost-effective method compared to tradit ...
EPFL2019
Water splitting is one of the cleanest ways to store energy. The production of hydrogen and oxygen gases can be utilized in fuel cells to generate electricity, power, and heat. In the water splitting process, the oxygen evolution reaction (OER), taking pla ...
The composition of the convecting asthenospheric mantle that feeds the mantle wedge can be investigated via rear-arc lavas that have minimal slab influence. This "ambient mantle wedge" composition (the composition of the wedge prior to the addition of a sl ...