Summary
Doubling the cube, also known as the Delian problem, is an ancient geometric problem. Given the edge of a cube, the problem requires the construction of the edge of a second cube whose volume is double that of the first. As with the related problems of squaring the circle and trisecting the angle, doubling the cube is now known to be impossible to construct by using only a compass and straightedge, but even in ancient times solutions were known that employed other tools. The Egyptians, Indians, and particularly the Greeks were aware of the problem and made many futile attempts at solving what they saw as an obstinate but soluble problem. However, the nonexistence of a compass-and-straightedge solution was finally proven by Pierre Wantzel in 1837. In algebraic terms, doubling a unit cube requires the construction of a line segment of length x, where x3 = 2; in other words, x = , the cube root of two. This is because a cube of side length 1 has a volume of 13 = 1, and a cube of twice that volume (a volume of 2) has a side length of the cube root of 2. The impossibility of doubling the cube is therefore equivalent to the statement that is not a constructible number. This is a consequence of the fact that the coordinates of a new point constructed by a compass and straightedge are roots of polynomials over the field generated by the coordinates of previous points, of no greater degree than a quadratic. This implies that the degree of the field extension generated by a constructible point must be a power of 2. The field extension generated by , however, is of degree 3. We begin with the unit line segment defined by points (0,0) and (1,0) in the plane. We are required to construct a line segment defined by two points separated by a distance of . It is easily shown that compass and straightedge constructions would allow such a line segment to be freely moved to touch the origin, parallel with the unit line segment - so equivalently we may consider the task of constructing a line segment from (0,0) to (, 0), which entails constructing the point (, 0).
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related courses (5)
MATH-124: Geometry for architects I
Ce cours entend exposer les fondements de la géométrie à un triple titre : 1/ de technique mathématique essentielle au processus de conception du projet, 2/ d'objet privilégié des logiciels de concept
MATH-126: Geometry for architects II
Ce cours traite des 3 sujets suivants : la perspective, la géométrie descriptive, et une initiation à la géométrie projective.
MATH-317: Algebra V - Galois theory
Galois theory aims at describing the algebraic symmetries of fields. After reviewing the basic material (from the 2nd year course "Ring and Fields") and in particular the Galois correspondence, we wi
Show more
Related publications (15)
Related people (1)
Related concepts (18)
Angle trisection
Angle trisection is a classical problem of straightedge and compass construction of ancient Greek mathematics. It concerns construction of an angle equal to one third of a given arbitrary angle, using only two tools: an unmarked straightedge and a compass. In 1837, Pierre Wantzel proved that the problem, as stated, is impossible to solve for arbitrary angles. However, some special angles can be trisected: for example, it is trivial to trisect a right angle (that is, to construct an angle of 30 degrees).
Greek mathematics
Greek mathematics refers to mathematics texts and ideas stemming from the Archaic through the Hellenistic and Roman periods, mostly attested from the late 7th century BC to the 6th century AD, around the shores of the Mediterranean. Greek mathematicians lived in cities spread over the entire region, from Anatolia to Italy and North Africa, but were united by Greek culture and the Greek language. The development of mathematics as a theoretical discipline and the use of proofs is an important difference between Greek mathematics and those of preceding civilizations.
Cubic equation
In algebra, a cubic equation in one variable is an equation of the form in which a is nonzero. The solutions of this equation are called roots of the cubic function defined by the left-hand side of the equation. If all of the coefficients a, b, c, and d of the cubic equation are real numbers, then it has at least one real root (this is true for all odd-degree polynomial functions). All of the roots of the cubic equation can be found by the following means: algebraically: more precisely, they can be expressed by a cubic formula involving the four coefficients, the four basic arithmetic operations, square roots and cube roots.
Show more