Concept

Mathematical descriptions of the electromagnetic field

There are various mathematical descriptions of the electromagnetic field that are used in the study of electromagnetism, one of the four fundamental interactions of nature. In this article, several approaches are discussed, although the equations are in terms of electric and magnetic fields, potentials, and charges with currents, generally speaking. Classical electromagnetism The most common description of the electromagnetic field uses two three-dimensional vector fields called the electric field and the magnetic field. These vector fields each have a value defined at every point of space and time and are thus often regarded as functions of the space and time coordinates. As such, they are often written as E(x, y, z, t) (electric field) and B(x, y, z, t) (magnetic field). If only the electric field (E) is non-zero, and is constant in time, the field is said to be an electrostatic field. Similarly, if only the magnetic field (B) is non-zero and is constant in time, the field is said to be a magnetostatic field. However, if either the electric or magnetic field has a time-dependence, then both fields must be considered together as a coupled electromagnetic field using Maxwell's equations. Maxwell's equations The behaviour of electric and magnetic fields, whether in cases of electrostatics, magnetostatics, or electrodynamics (electromagnetic fields), is governed by Maxwell-Heaviside's equations: {| class="toccolours collapsible" width="400px" style="background-color:#ECFCF4; padding:6; cellpadding=6;text-align:left;border:2px solid #50C878" |- |text-align="center" colspan="2"|Maxwell's equations (vector fields) |- | || Gauss's law |- | || Gauss's law for magnetism |- | || Faraday's law |- | || Ampère–Maxwell law |} where ρ is the charge density, which can (and often does) depend on time and position, ε0 is the electric constant, μ0 is the magnetic constant, and J is the current per unit area, also a function of time and position. The equations take this form with the International System of Quantities.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (7)
PHYS-432: Quantum field theory II
The goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions such as Quantum Electrodynamics.
PHYS-324: Classical electrodynamics
The goal of this course is the study of the physical and conceptual consequences of Maxwell equations.
PHYS-201(d): General physics: electromagnetism
The topics covered by the course are concepts of fluid mechanics, waves, and electromagnetism.
Show more
Related lectures (35)
Gupta-Bleuler Quantization
Covers the Gupta-Bleuler quantization method in Quantum Field Theory, focusing on redundancy in the electromagnetic field and the recovery of Maxwell equations.
Quantum Field Theory II: EM Field and Particle States
Covers the EM field and particle states in quantum field theory.
EM Field: Quantum Field Theory II
Covers the electromagnetic (EM) field in Quantum Field Theory II, discussing gauge transformations, symmetry principles, and field quantization.
Show more
Related publications (87)
Related concepts (10)
Field (physics)
In physics, a field is a physical quantity, represented by a scalar, vector, or tensor, that has a value for each point in space and time. For example, on a weather map, the surface temperature is described by assigning a number to each point on the map; the temperature can be considered at a certain point in time or over some interval of time, to study the dynamics of temperature change. A surface wind map, assigning an arrow to each point on a map that describes the wind speed and direction at that point, is an example of a vector field, i.
Covariant formulation of classical electromagnetism
The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism (in particular, Maxwell's equations and the Lorentz force) in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems. These expressions both make it simple to prove that the laws of classical electromagnetism take the same form in any inertial coordinate system, and also provide a way to translate the fields and forces from one frame to another.
Impedance of free space
In electromagnetism, the impedance of free space, Z0, is a physical constant relating the magnitudes of the electric and magnetic fields of electromagnetic radiation travelling through free space. That is, where is the electric field strength and is the magnetic field strength. Its presently accepted value is Where Ω is the ohm, the SI unit of electrical resistance. The impedance of free space (that is the wave impedance of a plane wave in free space) is equal to the product of the vacuum permeability μ0 and the speed of light in vacuum c0.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.