Ideal (order theory)In mathematical order theory, an ideal is a special subset of a partially ordered set (poset). Although this term historically was derived from the notion of a ring ideal of abstract algebra, it has subsequently been generalized to a different notion. Ideals are of great importance for many constructions in order and lattice theory. A subset I of a partially ordered set is an ideal, if the following conditions hold: I is non-empty, for every x in I and y in P, y ≤ x implies that y is in I (I is a lower set), for every x, y in I, there is some element z in I, such that x ≤ z and y ≤ z (I is a directed set).
Indexed familyIn mathematics, a family, or indexed family, is informally a collection of objects, each associated with an index from some index set. For example, a family of real numbers, indexed by the set of integers, is a collection of real numbers, where a given function selects one real number for each integer (possibly the same) as indexing. More formally, an indexed family is a mathematical function together with its domain and (that is, indexed families and mathematical functions are technically identical, just point of views are different).
Complete partial orderIn mathematics, the phrase complete partial order is variously used to refer to at least three similar, but distinct, classes of partially ordered sets, characterized by particular completeness properties. Complete partial orders play a central role in theoretical computer science: in denotational semantics and domain theory. A complete partial order, abbreviated cpo, can refer to any of the following concepts depending on context. A partially ordered set is a directed-complete partial order (dcpo) if each of its directed subsets has a supremum.
Compact elementIn the mathematical area of order theory, the compact elements or finite elements of a partially ordered set are those elements that cannot be subsumed by a supremum of any non-empty directed set that does not already contain members above the compact element. This notion of compactness simultaneously generalizes the notions of finite sets in set theory, compact sets in topology, and finitely generated modules in algebra. (There are other notions of compactness in mathematics.
Filter (mathematics)In mathematics, a filter or order filter is a special subset of a partially ordered set (poset), describing "large" or "eventual" elements. Filters appear in order and lattice theory, but also topology, whence they originate. The notion dual to a filter is an order ideal. Special cases of filters include ultrafilters, which are filters that cannot be enlarged, and describe nonconstructive techniques in mathematical logic. Filters on sets were introduced by Henri Cartan in 1937.
Cofinal (mathematics)In mathematics, a subset of a preordered set is said to be cofinal or frequent in if for every it is possible to find an element in that is "larger than " (explicitly, "larger than " means ). Cofinal subsets are very important in the theory of directed sets and nets, where “cofinal subnet” is the appropriate generalization of "subsequence".
Upper and lower boundsIn mathematics, particularly in order theory, an upper bound or majorant of a subset S of some preordered set (K, ≤) is an element of K that is greater than or equal to every element of S. Dually, a lower bound or minorant of S is defined to be an element of K that is less than or equal to every element of S. A set with an upper (respectively, lower) bound is said to be bounded from above or majorized (respectively bounded from below or minorized) by that bound.
Limit-preserving function (order theory)In the mathematical area of order theory, one often speaks about functions that preserve certain limits, i.e. certain suprema or infima. Roughly speaking, these functions map the supremum/infimum of a set to the supremum/infimum of the image of the set. Depending on the type of sets for which a function satisfies this property, it may preserve finite, directed, non-empty, or just arbitrary suprema or infima. Each of these requirements appears naturally and frequently in many areas of order theory and there are various important relationships among these concepts and other notions such as monotonicity.
Scott continuityIn mathematics, given two partially ordered sets P and Q, a function f: P → Q between them is Scott-continuous (named after the mathematician Dana Scott) if it preserves all directed suprema. That is, for every directed subset D of P with supremum in P, its has a supremum in Q, and that supremum is the image of the supremum of D, i.e. , where is the directed join. When is the poset of truth values, i.e. Sierpiński space, then Scott-continuous functions are characteristic functions of open sets, and thus Sierpiński space is the classifying space for open sets.
Specialization (pre)orderIn the branch of mathematics known as topology, the specialization (or canonical) preorder is a natural preorder on the set of the points of a topological space. For most spaces that are considered in practice, namely for all those that satisfy the T0 separation axiom, this preorder is even a partial order (called the specialization order). On the other hand, for T1 spaces the order becomes trivial and is of little interest. The specialization order is often considered in applications in computer science, where T0 spaces occur in denotational semantics.