In the mathematical area of order theory, one often speaks about functions that preserve certain limits, i.e. certain suprema or infima. Roughly speaking, these functions map the supremum/infimum of a set to the supremum/infimum of the image of the set. Depending on the type of sets for which a function satisfies this property, it may preserve finite, directed, non-empty, or just arbitrary suprema or infima. Each of these requirements appears naturally and frequently in many areas of order theory and there are various important relationships among these concepts and other notions such as monotonicity. If the implication of limit preservation is inverted, such that the existence of limits in the range of a function implies the existence of limits in the domain, then one obtains functions that are limit-reflecting.
The purpose of this article is to clarify the definition of these basic concepts, which is necessary since the literature is not always consistent at this point, and to give general results and explanations on these issues.
In many specialized areas of order theory, one restricts to classes of partially ordered sets that are complete with respect to certain limit constructions. For example, in lattice theory, one is interested in orders where all finite non-empty sets have both a least upper bound and a greatest lower bound. In domain theory, on the other hand, one focuses on partially ordered sets in which every directed subset has a supremum. Complete lattices and orders with a least element (the "empty supremum") provide further examples.
In all these cases, limits play a central role for the theories, supported by their interpretations in practical applications of each discipline. One also is interested in specifying appropriate mappings between such orders. From an algebraic viewpoint, this means that one wants to find adequate notions of homomorphisms for the structures under consideration. This is achieved by considering those functions that are compatible with the constructions that are characteristic for the respective orders.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This is an introductory course to the concentration of measure phenomenon - random functions that depend on many random variables tend to be often close to constant functions.
In the mathematical area of order theory, completeness properties assert the existence of certain infima or suprema of a given partially ordered set (poset). The most familiar example is the completeness of the real numbers. A special use of the term refers to complete partial orders or complete lattices. However, many other interesting notions of completeness exist. The motivation for considering completeness properties derives from the great importance of suprema (least upper bounds, joins, "") and infima (greatest lower bounds, meets, "") to the theory of partial orders.
In mathematics, a Heyting algebra (also known as pseudo-Boolean algebra) is a bounded lattice (with join and meet operations written ∨ and ∧ and with least element 0 and greatest element 1) equipped with a binary operation a → b of implication such that (c ∧ a) ≤ b is equivalent to c ≤ (a → b). From a logical standpoint, A → B is by this definition the weakest proposition for which modus ponens, the inference rule A → B, A ⊢ B, is sound. Like Boolean algebras, Heyting algebras form a variety axiomatizable with finitely many equations.
In mathematics, especially in order theory, a complete Heyting algebra is a Heyting algebra that is complete as a lattice. Complete Heyting algebras are the of three different ; the category CHey, the category Loc of locales, and its , the category Frm of frames. Although these three categories contain the same objects, they differ in their morphisms, and thus get distinct names. Only the morphisms of CHey are homomorphisms of complete Heyting algebras.
Covers fibrant objects, lift of horns, and the adjunction between quasi-categories and Kan complexes, as well as the generalization of categories and Kan complexes.
Explores the definitions and properties of infimum and supremum in mathematical analysis.
We extend the group-theoretic notion of conditional flatness for a localization functor to any pointed category, and investigate it in the context of homological categories and of semi-abelian categories. In the presence of functorial fiberwise localizatio ...
We present a lattice formulation of an interaction phi/Lambda F (F) over tilde between an axion and some U(1) gauge sector with the following properties: it reproduces the continuum theory up to O(dx(mu)(2)) corrections, it preserves exact gauge invariance ...
Time-sensitive networks provide worst-case guarantees for applications in domains such as the automobile, automation, avionics, and the space industries. A violation of these guarantees can cause considerable financial loss and serious damage to human live ...