**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Equivalence relation

Summary

In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation.
Each equivalence relation provides a partition of the underlying set into disjoint equivalence classes. Two elements of the given set are equivalent to each other if and only if they belong to the same equivalence class.
Notation
Various notations are used in the literature to denote that two elements a and b of a set are equivalent with respect to an equivalence relation R; the most common are "a \sim b" and "a ≡ b", which are used when R is implicit, and variations of "a \sim_R b", "a ≡R b", or "{a\mathop{R}b}" to specify R explicitly. Non-equivalence may be written "a ≁ b" or "a \not\equiv b".
Definition
A binary relation ,\si

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (32)

Loading

Loading

Loading

Related people (2)

Related units

Loading

Related concepts (101)

Group (mathematics)

In mathematics, a group is a non-empty set with an operation that satisfies the following constraints: the operation is associative, has an identity element, and every element of the set has an inver

Equivalence class

In mathematics, when the elements of some set S have a notion of equivalence (formalized as an equivalence relation), then one may naturally split the set S into equivalenc

Binary relation

In mathematics, a binary relation associates elements of one set, called the domain, with elements of another set, called the codomain. A binary relation over sets X and Y

Related courses (53)

CS-101: Advanced information, computation, communication I

Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics as diverse as mathematical reasoning, combinatorics, discrete structures & algorithmic thinking.

MATH-225: Topology

On étudie des notions de topologie générale: unions et quotients d'espaces topologiques; on approfondit les notions de revêtements et de groupe fondamental,et d'attachements de cellules et on démontre le Théorème de Seifert-van Kampen. Des exemples de surfaces illustrent les techniques de calcul.

MATH-101(g): Analysis I

Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles d'une variable.

Related lectures

Loading

Related units (1)

Related lectures (152)

As Avez showed (in 1970), the fundamental group of a compact Riemannian manifold of nonpositive sectional curvature has exponential growth if and only if it is not flat. After several generalizations from Gromov, Zimmer, Anderson, Burger and Shroeder, the following theorem was proved by Adams and Ballmann (in 1998). Theorem Let X be a proper CAT(0) space. If Γ is an amenable group of isometries of X, then at least one of the following two assertions holds: Γ fixes a point in ∂X (boundary of X). X contains a Γ-invariant flat (isometric copy of Rn, n ≥ 0). Following an idea of my PhD advisor Nicolas Monod, I tried to generalize this theorem in the context of goupoids, in this case Borel G-spaces and countable Borel equivalence relations. This lead me to study the notion of Borel fields of metric spaces, which turns out to be a suitable context to define an action of a countable Borel equivalence relation. A field of metric spaces over a set Ω is a family {(Xω,dω)} ω∈Ω of nonempty metric spaces denoted by (Ω,X•). We introduced as S( Ω,X•) the set of maps Such maps are called sections. If Ω is a Borel space, we can define a Borel structure on a field of metric spaces to be a subset Lℒ( Ω,X•) of S( Ω,X•) satisfying these three conditions For all f, g ∈ ℒ(Ω,X•), the function Ω → R, ω → dω(f(ω), g(ω)) is Borel. If h ∈ S(Ω,X•) is such that the function Ω → R, ω → dω(f(ω), h(ω)) is Borel for all f ∈ ℒ(Ω,X•), then h ∈ ℒ(Ω,X•). There exists a countable family of sections {fn}n≥1 ⊆ ℒ(Ω,X•) such that {fn (ω)}n≥1 = Xω for all ω ∈ Ω. This definition is consistent with more classical definitions of Borel fields of Banach spaces or of Borel fields of Hilbert spaces. The notion of a Borel field of metric spaces has been used in convex analysis and in economy. As said before, we can define an action of a countable Borel equivalence relation ℛ ⊆ Ω2 on a Borel field of metric spaces (Ω,X•) in a natural way. It's determined by a family of bijectives maps {α(ω, ω') : Xω → Xω'}(ω,ω')∈ℛ such that For all (ω,ω'), (ω',ω") ∈ ℛ the following equality is satisfied α(ω', ω") ◦ α(ω, ω') = α(ω, ω"). For all f, g ∈ ℒ(Ω,X), the function ℛ → R, (ω, ω') → dω(f(ω), α(ω', ω)g(ω')) is Borel. Zimmer (1977) introduced the notion of amenability for ergodic G-spaces and equivalence relations, of which we obtained the first generalization (in collaboration with Philippe Henry). Theorem Let R be a countable, Borel, preserving the class of the measure, ergodic and amenable equivalence relation on the probability space Ω acting on a Borel field ( Ω,X•) of proper CAT(0) spaces with finite topological dimension. Then at least one of the following assertions is true: There exists an ℛ-invariant Borel section ξ ∈ L(Ω,∂X•). There exists an ℛ-invariant Borel subfield (Ω, F•) of (Ω,X•) consisting of flat subsets. And the second generalization for amenable ergodic G-spaces. Theorem Let G be a locally compact second countable group, Ω a preserving class of the measure, ergodic amenable G-space, X a proper CAT(0) space with finite topological dimension and α : G × Ω → Iso(X) a Borel cocycle. Then at least one of the following assertions is true: There exists an α-invariant Borel function ξ : Ω → ∂X. There exists an α-invariant borelian subfield (Ω, F•) of the trivial field (Ω, X) consisting of flat subsets. If we consider (Ω,μ) to be a strong boundary of the group G, the cocycle α to come from an action of G on X, and X to have flats of at most dimension 2, then we can conclude the following. Theorem Let G be a locally compact second countable group, (Ω,μ) a strong boundary of G, X a proper CAT(0) space with finite topological dimension and whose flats are of dimension at most 2. Let suppose that G acts by isometry on X. Then at least one of the following assertions is true: There exists a G-equivariant Borel function ξ: Ω → ∂X. There exists a G-invariant flat F in X. The proof of the three theorems are strongly based on properties of Borel field of metric spaces that we prove in this thesis.

This work is dedicated to the study of Borel equivalence relations acting on Borel fields of CAT(0) metric spaces over a standard probability space. In this new framework we get similar results to some theorems proved recently by S. Adams-W. Ballmann or N. Monod concerning groups of isometries of CAT(0) spaces. In Chapter 1, we build several Borel structures on a variety of fields before dealing in particular with Borel fields of CAT(0) spaces. Chapter 2 discusses the notion of an action for an equivalence relation on a field of metric spaces and gives several examples. We also introduce a definition of amenability for equivalence relations in terms of invariant section following an idea of R.J. Zimmer. Chapter 3 deals with the action of an amenable equivalence relation and shows that such a relation cannot act without fixing a section at infinity or preserving a subfield of Euclidean spaces. In Chapter 4, we show that if an equivalence relation is generated by two commuting groups and acts without fixing a section at infinity, then the field splits equivariantly and isometrically as a product. Using this result we also show that equivalence relations containing two coamenable subrelations cannot act without fixing a section at infinity or preserving a subfield of Euclidean spaces.

Martin Anderegg, Philippe Paul Antoine Henry

We present the general notion of Borel fields of metric spaces and show some properties of such fields. Then we make the study specific to the Borel fields of proper CAT(0) spaces and we show that the standard tools we need behave in a Borel way. We also introduce the notion of the action of an equivalence relation on Borel fields of metric spaces and we obtain a rigidity result for the action of an amenable equivalence relation on a Borel field of proper finite dimensional CAT(0) spaces. This main theorem is inspired by the result obtained by Adams and Ballmann regarding the action of an amenable group on a proper CAT(0) space.