A New Kind of Science is a book by Stephen Wolfram, published by his company Wolfram Research under the imprint Wolfram Media in 2002. It contains an empirical and systematic study of computational systems such as cellular automata. Wolfram calls these systems simple programs and argues that the scientific philosophy and methods appropriate for the study of simple programs are relevant to other fields of science.
The thesis of A New Kind of Science (NKS) is twofold: that the nature of computation must be explored experimentally, and that the results of these experiments have great relevance to understanding the physical world.
The basic subject of Wolfram's "new kind of science" is the study of simple abstract rules—essentially, elementary computer programs. In almost any class of a computational system, one very quickly finds instances of great complexity among its simplest cases (after a time series of multiple iterative loops, applying the same simple set of rules on itself, similar to a self-reinforcing cycle using a set of rules). This seems to be true regardless of the components of the system and the details of its setup. Systems explored in the book include, amongst others, cellular automata in one, two, and three dimensions; mobile automata; Turing machines in 1 and 2 dimensions; several varieties of substitution and network systems; recursive functions; nested recursive functions; combinators; tag systems; register machines; reversal-addition. For a program to qualify as simple, there are several requirements:
Its operation can be completely explained by a simple graphical illustration.
It can be completely explained in a few sentences of human language.
It can be implemented in a computer language using just a few lines of code.
The number of its possible variations is small enough so that all of them can be computed.
Generally, simple programs tend to have a very simple abstract framework. Simple cellular automata, Turing machines, and combinators are examples of such frameworks, while more complex cellular automata do not necessarily qualify as simple programs.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
We will give an overview of the field of Artificial Life (Alife). We study questions such as emergence of complexity, self-reproduction, evolution, both through concrete models and through mathematica
The Rule 110 cellular automaton (often called simply Rule 110)is an elementary cellular automaton with interesting behavior on the boundary between stability and chaos. In this respect, it is similar to Conway's Game of Life. Like Life, Rule 110 with a particular repeating background pattern is known to be Turing complete. This implies that, in principle, any calculation or computer program can be simulated using this automaton. In an elementary cellular automaton, a one-dimensional pattern of 0s and 1s evolves according to a simple set of rules.
A cellular automaton (pl. cellular automata, abbrev. CA) is a discrete model of computation studied in automata theory. Cellular automata are also called cellular spaces, tessellation automata, homogeneous structures, cellular structures, tessellation structures, and iterative arrays. Cellular automata have found application in various areas, including physics, theoretical biology and microstructure modeling. A cellular automaton consists of a regular grid of cells, each in one of a finite number of states, such as on and off (in contrast to a coupled map lattice).
Stephen Wolfram (ˈwʊlfrəm ; born 29 August 1959) is a British-American computer scientist, physicist, and businessman. He is known for his work in computer science, mathematics, and theoretical physics. In 2012, he was named a fellow of the American Mathematical Society. He is currently an adjunct professor at the University of Illinois Department of Computer Science. As a businessman, he is the founder and CEO of the software company Wolfram Research where he works as chief designer of Mathematica and the Wolfram Alpha answer engine.
We describe the two-generated limits of abelian-by-(infinite cyclic) groups in the space of marked groups using number theoretic methods. We also discuss universal equivalence of these limits. ...
Determining the capacity of multi-receiver networks with arbitrary message demands is an open problem in the network coding literature. In this paper, we consider a multi-source, multi-receiver symmetric deterministic network model parameterized by channel ...
Ieee2012
, ,
Autonomous mobile robots are promising tools for operations in environments that are difficult to access for humans. When these environments are dynamic and non-deterministic, like in collapsed buildings, the robots must coordinate their actions and the us ...