The triple-alpha process is a set of nuclear fusion reactions by which three helium-4 nuclei (alpha particles) are transformed into carbon. Helium accumulates in the cores of stars as a result of the proton–proton chain reaction and the carbon–nitrogen–oxygen cycle. Nuclear fusion reaction of two helium-4 nuclei produces beryllium-8, which is highly unstable, and decays back into smaller nuclei with a half-life of 8.19e-17s, unless within that time a third alpha particle fuses with the beryllium-8 nucleus to produce an excited resonance state of carbon-12, called the Hoyle state, which nearly always decays back into three alpha particles, but once in about 2421.3 times releases energy and changes into the stable base form of carbon-12. When a star runs out of hydrogen to fuse in its core, it begins to contract and heat up. If the central temperature rises to 108 K, six times hotter than the Sun's core, alpha particles can fuse fast enough to get past the beryllium-8 barrier and produce significant amounts of stable carbon-12. {| | + →

(−0.0918 MeV)
+ → + 2_photon
(+7.367 MeV)
}
The net energy release of the process is 7.275 MeV.
As a side effect of the process, some carbon nuclei fuse with additional helium to produce a stable isotope of oxygen and energy:
→ + _photon (+7.162 MeV)
Nuclear fusion reactions of helium with hydrogen produces lithium-5, which also is highly unstable, and decays back into smaller nuclei with a half-life of 3.7e-22s.
Fusing with additional helium nuclei can create heavier elements in a chain of stellar nucleosynthesis known as the alpha process, but these reactions are only significant at higher temperatures and pressures than in cores undergoing the triple-alpha process. This creates a situation in which stellar nucleosynthesis produces large amounts of carbon and oxygen but only a small fraction of those elements are converted into neon and heavier elements. Oxygen and carbon are the main "ash" of helium-4 burning.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (3)
PHYS-465: Astrophysics III : galaxy formation and evolution
Galaxy formation & evolution is about studying how galaxies in our Universe come into existence, how they evolve and what shapes their properties. This course describes the observational facts of gala
PHYS-439: Introduction to astroparticle physics
We present the role of particle physics in cosmology and in the description of astrophysical phenomena. We also present the methods and technologies for the observation of cosmic particles.
PHYS-450: Radiation biology, protection and applications
This is an introductory course in radiation physics that aims at providing students with a foundation in radiation protection and with information about the main applications of radioactive sources/su
Related lectures (8)
Stellar Evolution: Core Collapse
Explores the evolution of massive stars, core collapse, and neutrino detection.
Fusion Reactions: Kinetic Energy and Impulse
Delves into fusion reactions, energy release, kinetic energy distribution, and impulse in collisions.
Origin of the Nuclides
Explores the origin of radionuclides from supernova explosions and their role in nature, covering topics such as nuclear astrophysics, cosmic element formation, and stellar evolution.
Show more
Related publications (50)

Estimation of Self-Exciting Point Processes from Time-Censored Data

Thomas Alois Weber, Philipp Schneider

Self-exciting point processes, widely used to model arrival phenomena in nature and society, are often difficult to identify. The estimation becomes even more challenging when arrivals are recorded only as bin counts on a finite partition of the observatio ...
2023

Excitation of Alfven eigenmodes by fusion-born alpha-particles in D-He-3 plasmas on JET

Henri Weisen, Javier García Hernández

Alfven eigenmode (AE) instabilities driven by alpha-particles have been observed in D-He-3 fusion experiments on the Joint European Torus (JET) with the ITER-like wall. For the efficient generation of fusion alpha-particles from D-He-3 fusion reaction, the ...
IOP Publishing Ltd2022

Experimental studies of plasma-antenna coupling with the JET Alfven Eigenmode Active Diagnostic

Ambrogio Fasoli, Duccio Testa, Mikhail Maslov

This paper presents a dedicated study of plasma-antenna (PA) coupling with the Alfven Eigenmode Active Diagnostic (AEAD) in JET. Stable AEs and their resonant frequencies f, damping rates gamma < 0, and toroidal mode numbers n are measured for various PA s ...
IOP PUBLISHING LTD2021
Show more
Related concepts (22)
Isotope
Isotopes are distinct nuclear species (or nuclides, as technical term) of the same element. They have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), but differ in nucleon numbers (mass numbers) due to different numbers of neutrons in their nuclei. While all isotopes of a given element have almost the same chemical properties, they have different atomic masses and physical properties.
Nuclear reaction
In nuclear physics and nuclear chemistry, a nuclear reaction is a process in which two nuclei, or a nucleus and an external subatomic particle, collide to produce one or more new nuclides. Thus, a nuclear reaction must cause a transformation of at least one nuclide to another. If a nucleus interacts with another nucleus or particle and they then separate without changing the nature of any nuclide, the process is simply referred to as a type of nuclear scattering, rather than a nuclear reaction.
Stellar nucleosynthesis
Stellar nucleosynthesis is the creation (nucleosynthesis) of chemical elements by nuclear fusion reactions within stars. Stellar nucleosynthesis has occurred since the original creation of hydrogen, helium and lithium during the Big Bang. As a predictive theory, it yields accurate estimates of the observed abundances of the elements. It explains why the observed abundances of elements change over time and why some elements and their isotopes are much more abundant than others.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.