Time evolution is the change of state brought about by the passage of time, applicable to systems with internal state (also called stateful systems). In this formulation, time is not required to be a continuous parameter, but may be discrete or even finite. In classical physics, time evolution of a collection of rigid bodies is governed by the principles of classical mechanics. In their most rudimentary form, these principles express the relationship between forces acting on the bodies and their acceleration given by Newton's laws of motion. These principles can also be equivalently expressed more abstractly by Hamiltonian mechanics or Lagrangian mechanics.
The concept of time evolution may be applicable to other stateful systems as well. For instance, the operation of a Turing machine can be regarded as the time evolution of the machine's control state together with the state of the tape (or possibly multiple tapes) including the position of the machine's read-write head (or heads). In this case, time is discrete.
Stateful systems often have dual descriptions in terms of states or in terms of observable values. In such systems, time evolution can also refer to the change in observable values. This is particularly relevant in quantum mechanics where the Schrödinger picture and Heisenberg picture are (mostly) equivalent descriptions of time evolution.
Consider a system with state space X for which evolution is deterministic and reversible. For concreteness let us also suppose time is a parameter that ranges over the set of real numbers R. Then time evolution is given by a family of bijective state transformations
Ft, s(x) is the state of the system at time t, whose state at time s is x. The following identity holds
To see why this is true, suppose x ∈ X is the state at time s. Then by the definition of F, Ft, s(x) is the state of the system at time t and consequently applying the definition once more, Fu, t(Ft, s(x)) is the state at time u. But this is also Fu, s(x).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Cours introductif à la commande des systèmes dynamiques. On part de quatre exemples concrets et on introduit au fur et à mesure un haut niveau d'abstraction permettant de résoudre de manière unifiée l
The course provides an introduction to the use of path integral methods in atomistic simulations.
The path integral formalism allows to introduce quantum mechanical effects on the equilibrium and (ap
The course provides an introduction to the use of path integral methods in atomistic simulations.
The path integral formalism allows to introduce quantum mechanical effects on the equilibrium and (ap
Ce cours vous apportera une compréhension des concepts fondamentaux de la thermodynamique du point de vue de la physique, de la chimie et de l’ingénierie. Il est scindé un deux MOOCs. Première partie:
In physics, Lagrangian mechanics is a formulation of classical mechanics founded on the stationary-action principle (also known as the principle of least action). It was introduced by the Italian-French mathematician and astronomer Joseph-Louis Lagrange in his 1788 work, Mécanique analytique. Lagrangian mechanics describes a mechanical system as a pair consisting of a configuration space and a smooth function within that space called a Lagrangian. For many systems, where and are the kinetic and potential energy of the system, respectively.
In theoretical physics, path-ordering is the procedure (or a meta-operator ) that orders a product of operators according to the value of a chosen parameter: Here p is a permutation that orders the parameters by value: For example: If an operator is not simply expressed as a product, but as a function of another operator, we must first perform a Taylor expansion of this function. This is the case of the Wilson loop, which is defined as a path-ordered exponential to guarantee that the Wilson loop encodes the holonomy of the gauge connection.
In mathematics, Hilbert spaces (named after David Hilbert) allow the methods of linear algebra and calculus to be generalized from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise naturally and frequently in mathematics and physics, typically as function spaces. Formally, a Hilbert space is a vector space equipped with an inner product that induces a distance function for which the space is a complete metric space.
Explores observability, governability, state regulators, and canonical forms in dynamic systems.
Explores deformation and strain tensors, Lagrange representation, elasticity theory, and the divergence theorem.
Explores quantum mechanics, focusing on time evolution, Schrodinger equation, observables, Hamiltonians, spin dynamics, and resonance phenomena.
, ,
We propose an adaptive quantum algorithm to prepare accurate variational time evolved wave functions. The method is based on the projected variational quantum dynamics (pVQD) algorithm, that performs a global optimization with linear scaling in the number ...
Approximate message passing (AMP) algorithms have become an important element of high-dimensional statistical inference, mostly due to their adaptability and concentration properties, the state evolution (SE) equations. This is demonstrated by the growing ...
OXFORD UNIV PRESS2023
, , , ,
Realand imaginary -time quantum state evolutions are crucial in physics and chemistry for exploring quantum dynamics, preparing ground states, and computing thermodynamic observables. On near -term devices, variational quantum time evolution is a promising ...