Reduction (mathematics)In mathematics, reduction refers to the rewriting of an expression into a simpler form. For example, the process of rewriting a fraction into one with the smallest whole-number denominator possible (while keeping the numerator a whole number) is called "reducing a fraction". Rewriting a radical (or "root") expression with the smallest possible whole number under the radical symbol is called "reducing a radical". Minimizing the number of radicals that appear underneath other radicals in an expression is called denesting radicals.
The Compendious Book on Calculation by Completion and BalancingThe Compendious Book on Calculation by Completion and Balancing (الكتاب المختصر في حساب الجبر والمقابلة, al-Kitāb al-Mukhtaṣar fī Ḥisāb al-Jabr wal-Muqābalah; Liber Algebræ et Almucabola), also known as al-Jabr (Arabic: الجبر), is an Arabic mathematical treatise on algebra written in Baghdad around 820 CE by the Persian polymath Muḥammad ibn Mūsā al-Khwārizmī. It was a landmark work in the history of mathematics, establishing algebra as an independent discipline.
AlgebraAlgebra () is the study of variables and the rules for manipulating these variables in formulas; it is a unifying thread of almost all of mathematics. Elementary algebra deals with the manipulation of variables (commonly represented by Roman letters) as if they were numbers and is therefore essential in all applications of mathematics. Abstract algebra is the name given, mostly in education, to the study of algebraic structures such as groups, rings, and fields.
Theory of equationsIn algebra, the theory of equations is the study of algebraic equations (also called "polynomial equations"), which are equations defined by a polynomial. The main problem of the theory of equations was to know when an algebraic equation has an algebraic solution. This problem was completely solved in 1830 by Évariste Galois, by introducing what is now called Galois theory. Before Galois, there was no clear distinction between the "theory of equations" and "algebra".
History of mathematicsThe history of mathematics deals with the origin of discoveries in mathematics and the mathematical methods and notation of the past. Before the modern age and the worldwide spread of knowledge, written examples of new mathematical developments have come to light only in a few locales. From 3000 BC the Mesopotamian states of Sumer, Akkad and Assyria, followed closely by Ancient Egypt and the Levantine state of Ebla began using arithmetic, algebra and geometry for purposes of taxation, commerce, trade and also in the patterns in nature, the field of astronomy and to record time and formulate calendars.
History of mathematical notationThe history of mathematical notation includes the commencement, progress, and cultural diffusion of mathematical symbols and the conflict of the methods of notation confronted in a notation's move to popularity or inconspicuousness. Mathematical notation comprises the symbols used to write mathematical equations and formulas. Notation generally implies a set of well-defined representations of quantities and symbols operators.
HypatiaHypatia (born 350–370; died 415 AD) was a neoplatonist philosopher, astronomer, and mathematician who lived in Alexandria, Egypt, then part of the Eastern Roman Empire. She was a prominent thinker in Alexandria where she taught philosophy and astronomy. Although preceded by Pandrosion, another Alexandrine female mathematician, she is the first female mathematician whose life is reasonably well recorded. Hypatia was renowned in her own lifetime as a great teacher and a wise counselor.
Completing the squareIn elementary algebra, completing the square is a technique for converting a quadratic polynomial of the form to the form for some values of h and k. In other words, completing the square places a perfect square trinomial inside of a quadratic expression. Completing the square is used in solving quadratic equations, deriving the quadratic formula, graphing quadratic functions, evaluating integrals in calculus, such as Gaussian integrals with a linear term in the exponent, finding Laplace transforms.
Mathematics educationIn contemporary education, mathematics education—known in Europe as the didactics or pedagogy of mathematics—is the practice of teaching, learning, and carrying out scholarly research into the transfer of mathematical knowledge. Although research into mathematics education is primarily concerned with the tools, methods, and approaches that facilitate practice or the study of practice, it also covers an extensive field of study encompassing a variety of different concepts, theories and methods.
Thābit ibn QurraThābit ibn Qurra (full name: Abū al-Ḥasan ibn Zahrūn al-Ḥarrānī al-Ṣābiʾ, أبو الحسن ثابت بن قرة بن زهرون الحراني الصابئ, Thebit/Thebith/Tebit); 826 or 836 – February 19, 901, was a polymath known for his work in mathematics, medicine, astronomy, and translation. He lived in Baghdad in the second half of the ninth century during the time of the Abbasid Caliphate. Thābit ibn Qurra made important discoveries in algebra, geometry, and astronomy. In astronomy, Thābit is considered one of the first reformers of the Ptolemaic system, and in mechanics he was a founder of statics.