Cauchy distributionThe Cauchy distribution, named after Augustin Cauchy, is a continuous probability distribution. It is also known, especially among physicists, as the Lorentz distribution (after Hendrik Lorentz), Cauchy–Lorentz distribution, Lorentz(ian) function, or Breit–Wigner distribution. The Cauchy distribution is the distribution of the x-intercept of a ray issuing from with a uniformly distributed angle. It is also the distribution of the ratio of two independent normally distributed random variables with mean zero.
Central momentIn probability theory and statistics, a central moment is a moment of a probability distribution of a random variable about the random variable's mean; that is, it is the expected value of a specified integer power of the deviation of the random variable from the mean. The various moments form one set of values by which the properties of a probability distribution can be usefully characterized.
Jensen's inequalityIn mathematics, Jensen's inequality, named after the Danish mathematician Johan Jensen, relates the value of a convex function of an integral to the integral of the convex function. It was proved by Jensen in 1906, building on an earlier proof of the same inequality for doubly-differentiable functions by Otto Hölder in 1889. Given its generality, the inequality appears in many forms depending on the context, some of which are presented below.
Method of moments (statistics)In statistics, the method of moments is a method of estimation of population parameters. The same principle is used to derive higher moments like skewness and kurtosis. It starts by expressing the population moments (i.e., the expected values of powers of the random variable under consideration) as functions of the parameters of interest. Those expressions are then set equal to the sample moments. The number of such equations is the same as the number of parameters to be estimated.
Markov's inequalityIn probability theory, Markov's inequality gives an upper bound for the probability that a non-negative function of a random variable is greater than or equal to some positive constant. It is named after the Russian mathematician Andrey Markov, although it appeared earlier in the work of Pafnuty Chebyshev (Markov's teacher), and many sources, especially in analysis, refer to it as Chebyshev's inequality (sometimes, calling it the first Chebyshev inequality, while referring to Chebyshev's inequality as the second Chebyshev inequality) or Bienaymé's inequality.
Pafnuty ChebyshevPafnuty Lvovich Chebyshev (Пафну́тий Льво́вич Чебышёв) ( – ) was a Russian mathematician and considered to be the founding father of Russian mathematics. Chebyshev is known for his fundamental contributions to the fields of probability, statistics, mechanics, and number theory. A number of important mathematical concepts are named after him, including the Chebyshev inequality (which can be used to prove the weak law of large numbers), the Bertrand–Chebyshev theorem, Chebyshev polynomials, Chebyshev linkage, and Chebyshev bias.
Chebyshev's inequalityIn probability theory, Chebyshev's inequality (also called the Bienaymé–Chebyshev inequality) guarantees that, for a wide class of probability distributions, no more than a certain fraction of values can be more than a certain distance from the mean. Specifically, no more than 1/k2 of the distribution's values can be k or more standard deviations away from the mean (or equivalently, at least 1 − 1/k2 of the distribution's values are less than k standard deviations away from the mean).
Hölder's inequalityIn mathematical analysis, Hölder's inequality, named after Otto Hölder, is a fundamental inequality between integrals and an indispensable tool for the study of Lp spaces. The numbers p and q above are said to be Hölder conjugates of each other. The special case p = q = 2 gives a form of the Cauchy–Schwarz inequality. Hölder's inequality holds even if 1 is infinite, the right-hand side also being infinite in that case. Conversely, if f is in Lp(μ) and g is in Lq(μ), then the pointwise product fg is in L1(μ).
Fatou's lemmaIn mathematics, Fatou's lemma establishes an inequality relating the Lebesgue integral of the limit inferior of a sequence of functions to the limit inferior of integrals of these functions. The lemma is named after Pierre Fatou. Fatou's lemma can be used to prove the Fatou–Lebesgue theorem and Lebesgue's dominated convergence theorem. In what follows, denotes the -algebra of Borel sets on . Fatou's lemma. Given a measure space and a set let be a sequence of -measurable non-negative functions .
Problem of pointsThe problem of points, also called the problem of division of the stakes, is a classical problem in probability theory. One of the famous problems that motivated the beginnings of modern probability theory in the 17th century, it led Blaise Pascal to the first explicit reasoning about what today is known as an expected value. The problem concerns a game of chance with two players who have equal chances of winning each round. The players contribute equally to a prize pot, and agree in advance that the first player to have won a certain number of rounds will collect the entire prize.