Summary
In operator theory, a multiplication operator is an operator Tf defined on some vector space of functions and whose value at a function φ is given by multiplication by a fixed function f. That is, for all φ in the domain of Tf, and all x in the domain of φ (which is the same as the domain of f). This type of operator is often contrasted with composition operators. Multiplication operators generalize the notion of operator given by a diagonal matrix. More precisely, one of the results of operator theory is a spectral theorem that states that every self-adjoint operator on a Hilbert space is unitarily equivalent to a multiplication operator on an L2 space. Consider the Hilbert space X = L2[−1, 3] of complex-valued square integrable functions on the interval . With f(x) = x2, define the operator for any function φ in X. This will be a self-adjoint bounded linear operator, with domain all of X = L2[−1, 3] and with norm 9. Its spectrum will be the interval (the range of the function x→ x2 defined on ). Indeed, for any complex number λ, the operator Tf − λ is given by It is invertible if and only if λ is not in , and then its inverse is which is another multiplication operator. This can be easily generalized to characterizing the norm and spectrum of a multiplication operator on any Lp space.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (1)
COM-309: Introduction to quantum information processing
Information is processed in physical devices. In the quantum regime the concept of classical bit is replaced by the quantum bit. We introduce quantum principles, and then quantum communications, key d