In operator theory, a multiplication operator is an operator Tf defined on some vector space of functions and whose value at a function φ is given by multiplication by a fixed function f. That is, for all φ in the domain of Tf, and all x in the domain of φ (which is the same as the domain of f). This type of operator is often contrasted with composition operators. Multiplication operators generalize the notion of operator given by a diagonal matrix. More precisely, one of the results of operator theory is a spectral theorem that states that every self-adjoint operator on a Hilbert space is unitarily equivalent to a multiplication operator on an L2 space. Consider the Hilbert space X = L2[−1, 3] of complex-valued square integrable functions on the interval . With f(x) = x2, define the operator for any function φ in X. This will be a self-adjoint bounded linear operator, with domain all of X = L2[−1, 3] and with norm 9. Its spectrum will be the interval (the range of the function x→ x2 defined on ). Indeed, for any complex number λ, the operator Tf − λ is given by It is invertible if and only if λ is not in , and then its inverse is which is another multiplication operator. This can be easily generalized to characterizing the norm and spectrum of a multiplication operator on any Lp space.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.