Summary
In linear algebra, the column space (also called the range or ) of a matrix A is the span (set of all possible linear combinations) of its column vectors. The column space of a matrix is the or range of the corresponding matrix transformation. Let be a field. The column space of an m × n matrix with components from is a linear subspace of the m-space . The dimension of the column space is called the rank of the matrix and is at most min(m, n). A definition for matrices over a ring is also possible. The row space is defined similarly. The row space and the column space of a matrix A are sometimes denoted as C(AT) and C(A) respectively. This article considers matrices of real numbers. The row and column spaces are subspaces of the real spaces and respectively. Let A be an m-by-n matrix. Then rank(A) = dim(rowsp(A)) = dim(colsp(A)), rank(A) = number of pivots in any echelon form of A, rank(A) = the maximum number of linearly independent rows or columns of A. If one considers the matrix as a linear transformation from to , then the column space of the matrix equals the of this linear transformation. The column space of a matrix A is the set of all linear combinations of the columns in A. If A = [a1 ⋯ an], then colsp(A) = span(). The concept of row space generalizes to matrices over , the field of complex numbers, or over any field. Intuitively, given a matrix A, the action of the matrix A on a vector x will return a linear combination of the columns of A weighted by the coordinates of x as coefficients. Another way to look at this is that it will (1) first project x into the row space of A, (2) perform an invertible transformation, and (3) place the resulting vector y in the column space of A. Thus the result y = Ax must reside in the column space of A. See singular value decomposition for more details on this second interpretation. Given a matrix J: the rows are Consequently, the row space of J is the subspace of spanned by . Since these four row vectors are linearly independent, the row space is 4-dimensional.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related publications (40)