Closing (morphology)In mathematical morphology, the closing of a set () A by a structuring element B is the erosion of the dilation of that set, where and denote the dilation and erosion, respectively. In , closing is, together with opening, the basic workhorse of morphological noise removal. Opening removes small objects, while closing removes small holes. It is idempotent, that is, . It is increasing, that is, if , then . It is extensive, i.e., . It is translation invariant.
Video processingIn electronics engineering, video processing is a particular case of signal processing, in particular , which often employs video filters and where the input and output signals are s or video streams. Video processing techniques are used in television sets, VCRs, DVDs, video codecs, video players, video scalers and other devices. For example—commonly only design and video processing is different in TV sets of different manufactures. Video processors are often combined with video scalers to create a video processor that improves the apparent definition of video signals.
Binary imageA binary image is one that consists of pixels that can have one of exactly two colors, usually black and white. Binary images are also called bi-level or two-level, Pixelart made of two colours is often referred to as 1-Bit or 1bit. This means that each pixel is stored as a single bit—i.e., a 0 or 1. The names black-and-white, B&W, monochrome or monochromatic are often used for this concept, but may also designate any images that have only one sample per pixel, such as grayscale images.
ConvolutionIn mathematics (in particular, functional analysis), convolution is a mathematical operation on two functions (f and g) that produces a third function () that expresses how the shape of one is modified by the other. The term convolution refers to both the result function and to the process of computing it. It is defined as the integral of the product of the two functions after one is reflected about the y-axis and shifted. The choice of which function is reflected and shifted before the integral does not change the integral result (see commutativity).
Gaussian blurIn , a Gaussian blur (also known as Gaussian smoothing) is the result of blurring an by a Gaussian function (named after mathematician and scientist Carl Friedrich Gauss). It is a widely used effect in graphics software, typically to reduce and reduce detail. The visual effect of this blurring technique is a smooth blur resembling that of viewing the image through a translucent screen, distinctly different from the bokeh effect produced by an out-of-focus lens or the shadow of an object under usual illumination.
Multi-exposure HDR captureIn photography and videography, multi-exposure HDR capture is a technique that creates extended or high dynamic range (HDR) images by taking and combining multiple exposures of the same subject matter at different exposure levels. Combining multiple images in this way results in an image with a greater dynamic range than what would be possible by taking one single image. The technique can also be used to capture video by taking and combining multiple exposures for each frame of the video.
Image restoration by artificial intelligenceImage restoration is the operation of taking a corrupt/noisy image and estimating the clean, original image. Corruption may come in many forms such as motion blur, and camera mis-focus. Image restoration is performed by reversing the process that blurred the image and such is performed by imaging a point source and use the point source image, which is called the Point Spread Function (PSF) to restore the image information lost to the blurring process.
Independent component analysisIn signal processing, independent component analysis (ICA) is a computational method for separating a multivariate signal into additive subcomponents. This is done by assuming that at most one subcomponent is Gaussian and that the subcomponents are statistically independent from each other. ICA is a special case of blind source separation. A common example application is the "cocktail party problem" of listening in on one person's speech in a noisy room.
Opening (morphology)In mathematical morphology, opening is the dilation of the erosion of a set A by a structuring element B: where and denote erosion and dilation, respectively. Together with closing, the opening serves in computer vision and as a basic workhorse of morphological noise removal. Opening removes small objects from the foreground (usually taken as the bright pixels) of an image, placing them in the background, while closing removes small holes in the foreground, changing small islands of background into foreground.
Noise shapingNoise shaping is a technique typically used in digital audio, , and video processing, usually in combination with dithering, as part of the process of quantization or bit-depth reduction of a digital signal. Its purpose is to increase the apparent signal-to-noise ratio of the resultant signal. It does this by altering the spectral shape of the error that is introduced by dithering and quantization; such that the noise power is at a lower level in frequency bands at which noise is considered to be less desirable and at a correspondingly higher level in bands where it is considered to be more desirable.