Closing (morphology)In mathematical morphology, the closing of a set () A by a structuring element B is the erosion of the dilation of that set, where and denote the dilation and erosion, respectively. In , closing is, together with opening, the basic workhorse of morphological noise removal. Opening removes small objects, while closing removes small holes. It is idempotent, that is, . It is increasing, that is, if , then . It is extensive, i.e., . It is translation invariant.
Traitement de la vidéoLe traitement de la vidéo est la branche du traitement du signal qui s'applique à un signal vidéo, dans le but notamment d'en améliorer la qualité, de le compresser, ou d'en extraire de l'information. Bien qu'il soit courant de « traiter » une vidéo en traitant indépendamment chacune de ses (ou frames) comme dans le cas des corrections de colorimétrie, ou certains effets spéciaux comme l'incrustation), la théorie du traitement vidéo consiste, a priori, à tirer également parti de la relation qui lie chacune des images à ses précédentes et ses suivantes, par évolution de mouvements ou autres modifications graduelles dans le temps.
Image binaireParmi les , et en particulier, les , les images binaires sont les plus simples. Bichromes (la plupart du temps noire et blanche) elles sont ontologiquement numériques c'est-à-dire que leur codage et leur décodage peuvent être faits directement vers la base 2. Il existe deux images binaires pour représenter un point au centre d'une matrice de neuf éléments (il peut s'agir très simplement d'ampoules allumées ou éteintes) : 000 010 000 codage : 0, 2, 0 111 101 111 codage : 7, 5, 7 Niveau de gris Tramage (ou d
Produit de convolutionEn mathématiques, le produit de convolution est un opérateur bilinéaire et un produit commutatif, généralement noté « ∗ », qui, à deux fonctions f et g sur un même domaine infini, fait correspondre une autre fonction « f ∗ g » sur ce domaine, qui en tout point de celui-ci est égale à l'intégrale sur l'entièreté du domaine (ou la somme si celui-ci est discret) d'une des deux fonctions autour de ce point, pondérée par l'autre fonction autour de l'origine — les deux fonctions étant parcourues en sens contraire
Gaussian blurIn , a Gaussian blur (also known as Gaussian smoothing) is the result of blurring an by a Gaussian function (named after mathematician and scientist Carl Friedrich Gauss). It is a widely used effect in graphics software, typically to reduce and reduce detail. The visual effect of this blurring technique is a smooth blur resembling that of viewing the image through a translucent screen, distinctly different from the bokeh effect produced by an out-of-focus lens or the shadow of an object under usual illumination.
Imagerie à grande gamme dynamiqueL'imagerie à grande gamme dynamique (ou imagerie large-gamme) (high-dynamic-range imaging ou HDRI) regroupe un ensemble de techniques numériques permettant de présenter une image fixe ou animée d'une scène qui présente, dans ses diverses parties, des niveaux très différents de luminosité. Une se constitue à partir de pixels auxquels est associé un triplet de valeurs qui en indique la luminosité et la couleur. Le rendu à grande dynamique concerne des fichiers d'origine où les pixels ont plus de valeurs possibles que les écrans ou imprimantes du rendu.
Restauration (image)La restauration d'image est une technique d' qui permet, à l'aide d'un logiciel de retouche d'image, de rendre à une image numérisée l'apparence de son état d'origine. Pour ce faire, l'image est dans un premier temps importée dans l'ordinateur, généralement à l'aide d'un scanner, dans une , qui permet de travailler les détails. Ensuite, à l'aide d'un logiciel de comme Photoshop ou GIMP, l'infographiste dessine littéralement sur l'image, afin d'en supprimer les défauts.
Analyse en composantes indépendantesL'analyse en composantes indépendantes (en anglais, independent component analysis ou ICA) est une méthode d'analyse des données (voir aussi Exploration de données) qui relève des statistiques, des réseaux de neurones et du traitement du signal. Elle est notoirement et historiquement connue en tant que méthode de séparation aveugle de source mais a par suite été appliquée à divers problèmes. Les contributions principales ont été rassemblées dans un ouvrage édité en 2010 par P.Comon et C.Jutten.
Opening (morphology)In mathematical morphology, opening is the dilation of the erosion of a set A by a structuring element B: where and denote erosion and dilation, respectively. Together with closing, the opening serves in computer vision and as a basic workhorse of morphological noise removal. Opening removes small objects from the foreground (usually taken as the bright pixels) of an image, placing them in the background, while closing removes small holes in the foreground, changing small islands of background into foreground.
Noise shapingNoise shaping is a technique typically used in digital audio, , and video processing, usually in combination with dithering, as part of the process of quantization or bit-depth reduction of a digital signal. Its purpose is to increase the apparent signal-to-noise ratio of the resultant signal. It does this by altering the spectral shape of the error that is introduced by dithering and quantization; such that the noise power is at a lower level in frequency bands at which noise is considered to be less desirable and at a correspondingly higher level in bands where it is considered to be more desirable.