Concept

Gravity loss

Summary
In astrodynamics and rocketry, gravity loss is a measure of the loss in the net performance of a rocket while it is thrusting in a gravitational field. In other words, it is the cost of having to hold the rocket up in a gravity field. Gravity losses depend on the time over which thrust is applied as well the direction the thrust is applied in. Gravity losses as a proportion of delta-v are minimised if maximum thrust is applied for a short time, or if thrust is applied in a direction perpendicular to the local gravitational field. During the launch and ascent phase, however, thrust must be applied over a long period with a major component of thrust in the opposite direction to gravity, so gravity losses become significant. For example, to reach a speed of 7.8 km/s in low Earth orbit requires a delta-v of between 9 and 10 km/s. The additional 1.5 to 2 km/s delta-v is due to gravity losses, steering losses and atmospheric drag. Example Consider the simplified
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading