The arcuate nucleus of the hypothalamus (also known as ARH, ARC, or infundibular nucleus) is an aggregation of neurons in the mediobasal hypothalamus, adjacent to the third ventricle and the median eminence. The arcuate nucleus includes several important and diverse populations of neurons that help mediate different neuroendocrine and physiological functions, including neuroendocrine neurons, centrally projecting neurons, and astrocytes. The populations of neurons found in the arcuate nucleus are based on the hormones they secrete or interact with and are responsible for hypothalamic function, such as regulating hormones released from the pituitary gland or secreting their own hormones. Neurons in this region are also responsible for integrating information and providing inputs to other nuclei in the hypothalamus or inputs to areas outside this region of the brain. These neurons, generated from the ventral part of the periventricular epithelium during embryonic development, locate dorsally in the hypothalamus, becoming part of the ventromedial hypothalamic region. The function of the arcuate nucleus relies on its diversity of neurons, but its central role is involved in homeostasis. The arcuate nucleus provides many physiological roles involved in feeding, metabolism, fertility, and cardiovascular regulation. Different groups of arcuate nucleus neuroendocrine neurons secrete various types or combinations of neurotransmitters and neuropeptides, such as neuropeptide Y (NPY), gonadotropin-releasing hormone (GnRH), agouti-related peptide (AgRP), cocaine- and amphetamine-regulated transcript (CART), kisspeptin, dopamine, substance P, growth hormone–releasing hormone (GHRH), neurokinin B (NKB), β-endorphin, melanocyte-stimulating hormone (MSH), and somatostatin. Proopiomelanocortin (POMC) is a precursor polypeptide that is cleaved into MSH, ACTH, and β-endorphin and expressed in the arcuate nucleus. Groups of neuroendocrine neurons include: TIDA neurons, or tuberoinfundibular dopamine neurons, are neurons that regulate the secretion of prolactin from the pituitary gland and release the neurotransmitter dopamine.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (6)
BIO-499: Neural circuits of motivated behaviors
Motivated behaviors fulfil the basic physiological needs of animals and enable their safety. In this course, you will learn about the neuronal circuits that sense and regulate internal states, detect
BIO-377: Physiology by systems
Le but est de connaitre et comprendre le fonctionnement des systèmes cardiovasculaire, urinaire, respiratoire, digestif, ainsi que du métabolisme de base et sa régulation afin de déveloper une réflect
BIO-321: Morphology II
Ce cours permet aux étudiants ayant suivi Morphologie I de réviser et d'approfondir leurs connaissances par l'étude de l'anatomie radiologique et du développement. L'origine de malformations fréquente
Show more
Related lectures (32)
Histology Practice: Hypophysis Microscopy
Delves into the practical aspects of histology, focusing on the microscopic examination of the hypophysis and its surrounding tissues.
Hypothalamus Regulation: Agouti and Food Intake
Explores the hypothalamus' role in regulating food intake and the impact of Mc4R mutations on obesity.
Development of Central Nervous System
Covers the development of the central nervous system and the secretion of growth hormone, along with the treatment of acromegaly using somatostatin analogs.
Show more
Related publications (36)
Related concepts (18)
Neuropeptide
Neuropeptides are chemical messengers made up of small chains of amino acids that are synthesized and released by neurons. Neuropeptides typically bind to G protein-coupled receptors (GPCRs) to modulate neural activity and other tissues like the gut, muscles, and heart. There are over 100 known neuropeptides, representing the largest and most diverse class of signaling molecules in the nervous system. Neuropeptides are synthesized from large precursor proteins which are cleaved and post-translationally processed then packaged into dense core vesicles.
Somatostatin
Somatostatin, also known as growth hormone-inhibiting hormone (GHIH) or by several other names, is a peptide hormone that regulates the endocrine system and affects neurotransmission and cell proliferation via interaction with G protein-coupled somatostatin receptors and inhibition of the release of numerous secondary hormones. Somatostatin inhibits insulin and glucagon secretion. Somatostatin has two active forms produced by the alternative cleavage of a single preproprotein: one consisting of 14 amino acids (shown in infobox to right), the other consisting of 28 amino acids.
Leptin
Leptin (from Greek λεπτός leptos, "thin" or "light" or "small") is a protein hormone predominantly made by adipose cells and its primary role is likely to regulate long-term energy balance. As one of the major signals of energy status, leptin levels influence appetite, satiety, and motivated behaviors oriented towards the maintenance of energy reserves (e.g., feeding, foraging behaviors). The amount of circulating leptin correlates with the amount of energy reserves, mainly triglycerides stored in adipose tissue.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.