Summary
Neurotechnology encompasses any method or electronic device which interfaces with the nervous system to monitor or modulate neural activity. Common design goals for neurotechnologies include using neural activity readings to control external devices such as neuroprosthetics, altering neural activity via neuromodulation to repair or normalize function affected by neurological disorders, or augmenting cognitive abilities. In addition to their therapeutic or commercial uses, neurotechnologies also constitute powerful research tools to advance fundamental neuroscience knowledge. Some examples of neurotechnologies include deep brain stimulation, photostimulation based on optogenetics and photopharmacology, transcranial magnetic stimulation, transcranial electric stimulation and brain–computer interfaces, such as cochlear implants and retinal implants. The field of neurotechnology has been around for nearly half a century but has only reached maturity in the last twenty years. The advent of brain imaging revolutionized the field, allowing researchers to directly monitor the brain's activities during experiments. Practice in neurotechnology can be found in fields such as pharmaceutical practices, be it from drugs for depression, sleep, ADHD, or anti-neurotics to cancer scanning, stroke rehabilitation, etc. Many in the field aim to control and harness more of what the brain does and how it influences lifestyles and personalities. Commonplace technologies already attempt to do this; games like BrainAge, and programs like Fast ForWord that aim to improve brain function, are neurotechnologies. Currently, modern science can image nearly all aspects of the brain as well as control a degree of the function of the brain. It can help control depression, over-activation, sleep deprivation, and many other conditions. Therapeutically it can help improve stroke patients' motor coordination, improve brain function, reduce epileptic episodes (see epilepsy), improve patients with degenerative motor diseases (Parkinson's disease, Huntington's disease, ALS), and can even help alleviate phantom pain perception.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (7)
NX-436: Advanced methods for human neuromodulation
Neuromodulation is an expending field especially in human translational neuroscience and neurotechnology. This course will introduce to different approaches / technologies for neuromodulation, their u
NX-423: Translational neuroengineering
This course integrates knowledge in basic, systems, clinical and computational neuroscience, and engineering with the goal of translating this integrated knowledge into the development of novel method
NX-422: Neural interfaces
Neural interfaces (NI) are bioelectronic systems that interface the nervous system to digital technologies. This course presents their main building blocks (transducers, instrumentation & communicatio
Show more
Related publications (73)