Concept

Trimean

Related concepts (10)
Midhinge
In statistics, the midhinge is the average of the first and third quartiles and is thus a measure of location. Equivalently, it is the 25% trimmed mid-range or 25% midsummary; it is an L-estimator. The midhinge is related to the interquartile range (IQR), the difference of the third and first quartiles (i.e. ), which is a measure of statistical dispersion. The two are complementary in sense that if one knows the midhinge and the IQR, one can find the first and third quartiles.
L-estimator
In statistics, an L-estimator is an estimator which is a linear combination of order statistics of the measurements (which is also called an L-statistic). This can be as little as a single point, as in the median (of an odd number of values), or as many as all points, as in the mean. The main benefits of L-estimators are that they are often extremely simple, and often robust statistics: assuming sorted data, they are very easy to calculate and interpret, and are often resistant to outliers.
Interquartile mean
The interquartile mean (IQM) (or midmean) is a statistical measure of central tendency based on the truncated mean of the interquartile range. The IQM is very similar to the scoring method used in sports that are evaluated by a panel of judges: discard the lowest and the highest scores; calculate the mean value of the remaining scores. In calculation of the IQM, only the data between the first and third quartiles is used, and the lowest 25% and the highest 25% of the data are discarded. assuming the values have been ordered.
Mid-range
In statistics, the mid-range or mid-extreme is a measure of central tendency of a sample defined as the arithmetic mean of the maximum and minimum values of the data set: The mid-range is closely related to the range, a measure of statistical dispersion defined as the difference between maximum and minimum values. The two measures are complementary in sense that if one knows the mid-range and the range, one can find the sample maximum and minimum values.
Average
In ordinary language, an average is a single number taken as representative of a list of numbers, usually the sum of the numbers divided by how many numbers are in the list (the arithmetic mean). For example, the average of the numbers 2, 3, 4, 7, and 9 (summing to 25) is 5. Depending on the context, an average might be another statistic such as the median, or mode. For example, the average personal income is often given as the median—the number below which are 50% of personal incomes and above which are 50% of personal incomes—because the mean would be higher by including personal incomes from a few billionaires.
Five-number summary
The five-number summary is a set of descriptive statistics that provides information about a dataset. It consists of the five most important sample percentiles: the sample minimum (smallest observation) the lower quartile or first quartile the median (the middle value) the upper quartile or third quartile the sample maximum (largest observation) In addition to the median of a single set of data there are two related statistics called the upper and lower quartiles.
Quartile
In statistics, a quartile is a type of quantile which divides the number of data points into four parts, or quarters, of more-or-less equal size. The data must be ordered from smallest to largest to compute quartiles; as such, quartiles are a form of order statistic. The three main quartiles are as follows: The first quartile (Q1) is defined as the middle number between the smallest number (minimum) and the median of the data set. It is also known as the lower quartile, as 25% of the data is below this point.
Box plot
In descriptive statistics, a box plot or boxplot is a method for graphically demonstrating the locality, spread and skewness groups of numerical data through their quartiles. In addition to the box on a box plot, there can be lines (which are called whiskers) extending from the box indicating variability outside the upper and lower quartiles, thus, the plot is also called the box-and-whisker plot and the box-and-whisker diagram. Outliers that differ significantly from the rest of the dataset may be plotted as individual points beyond the whiskers on the box-plot.
Central tendency
In statistics, a central tendency (or measure of central tendency) is a central or typical value for a probability distribution. Colloquially, measures of central tendency are often called averages. The term central tendency dates from the late 1920s. The most common measures of central tendency are the arithmetic mean, the median, and the mode. A middle tendency can be calculated for either a finite set of values or for a theoretical distribution, such as the normal distribution.
Robust statistics
Robust statistics are statistics with good performance for data drawn from a wide range of probability distributions, especially for distributions that are not normal. Robust statistical methods have been developed for many common problems, such as estimating location, scale, and regression parameters. One motivation is to produce statistical methods that are not unduly affected by outliers. Another motivation is to provide methods with good performance when there are small departures from a parametric distribution.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.