Scalar (mathematics)A scalar is an element of a field which is used to define a vector space. In linear algebra, real numbers or generally elements of a field are called scalars and relate to vectors in an associated vector space through the operation of scalar multiplication (defined in the vector space), in which a vector can be multiplied by a scalar in the defined way to produce another vector. Generally speaking, a vector space may be defined by using any field instead of real numbers (such as complex numbers).
Sign (mathematics)In mathematics, the sign of a real number is its property of being either positive, negative, or zero. Depending on local conventions, zero may be considered as being neither positive nor negative (having no sign or a unique third sign), or it may be considered both positive and negative (having both signs). Whenever not specifically mentioned, this article adheres to the first convention. In some contexts, it makes sense to consider a signed zero (such as floating-point representations of real numbers within computers).
Absolute valueIn mathematics, the absolute value or modulus of a real number , denoted , is the non-negative value of without regard to its sign. Namely, if is a positive number, and if is negative (in which case negating makes positive), and . For example, the absolute value of 3 is 3, and the absolute value of −3 is also 3. The absolute value of a number may be thought of as its distance from zero. Generalisations of the absolute value for real numbers occur in a wide variety of mathematical settings.
Inner product spaceIn mathematics, an inner product space (or, rarely, a Hausdorff pre-Hilbert space) is a real vector space or a complex vector space with an operation called an inner product. The inner product of two vectors in the space is a scalar, often denoted with angle brackets such as in . Inner products allow formal definitions of intuitive geometric notions, such as lengths, angles, and orthogonality (zero inner product) of vectors. Inner product spaces generalize Euclidean vector spaces, in which the inner product is the dot product or scalar product of Cartesian coordinates.
Ball (mathematics)In mathematics, a ball is the solid figure bounded by a sphere; it is also called a solid sphere. It may be a closed ball (including the boundary points that constitute the sphere) or an open ball (excluding them). These concepts are defined not only in three-dimensional Euclidean space but also for lower and higher dimensions, and for metric spaces in general. A ball in n dimensions is called a hyperball or n-ball and is bounded by a hypersphere or (n−1)-sphere.
Involution (mathematics)In mathematics, an involution, involutory function, or self-inverse function is a function f that is its own inverse, f(f(x)) = x for all x in the domain of f. Equivalently, applying f twice produces the original value. Any involution is a bijection. The identity map is a trivial example of an involution. Examples of nontrivial involutions include negation (), reciprocation (), and complex conjugation () in arithmetic; reflection, half-turn rotation, and circle inversion in geometry; complementation in set theory; and reciprocal ciphers such as the ROT13 transformation and the Beaufort polyalphabetic cipher.
Absorbing setIn functional analysis and related areas of mathematics an absorbing set in a vector space is a set which can be "inflated" or "scaled up" to eventually always include any given point of the vector space. Alternative terms are radial or absorbent set. Every neighborhood of the origin in every topological vector space is an absorbing subset.
Unit sphereIn mathematics, a unit sphere is simply a sphere of radius one around a given center. More generally, it is the set of points of distance 1 from a fixed central point, where different norms can be used as general notions of "distance". A unit ball is the closed set of points of distance less than or equal to 1 from a fixed central point. Usually the center is at the origin of the space, so one speaks of "the unit ball" or "the unit sphere". Special cases are the unit circle and the unit disk.
F-spaceIn functional analysis, an F-space is a vector space over the real or complex numbers together with a metric such that Scalar multiplication in is continuous with respect to and the standard metric on or Addition in is continuous with respect to The metric is translation-invariant; that is, for all The metric space is complete. The operation is called an F-norm, although in general an F-norm is not required to be homogeneous. By translation-invariance, the metric is recoverable from the F-norm.
Hamming distanceIn information theory, the Hamming distance between two strings of equal length is the number of positions at which the corresponding symbols are different. In other words, it measures the minimum number of substitutions required to change one string into the other, or the minimum number of errors that could have transformed one string into the other. In a more general context, the Hamming distance is one of several string metrics for measuring the edit distance between two sequences.