**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Concept# Ball (mathematics)

Summary

In mathematics, a ball is the solid figure bounded by a sphere; it is also called a solid sphere. It may be a closed ball (including the boundary points that constitute the sphere) or an open ball (excluding them).
These concepts are defined not only in three-dimensional Euclidean space but also for lower and higher dimensions, and for metric spaces in general. A ball in n dimensions is called a hyperball or n-ball and is bounded by a hypersphere or (n−1)-sphere. Thus, for example, a ball in the Euclidean plane is the same thing as a disk, the area bounded by a circle. In Euclidean 3-space, a ball is taken to be the volume bounded by a 2-dimensional sphere. In a one-dimensional space, a ball is a line segment.
In other contexts, such as in Euclidean geometry and informal use, sphere is sometimes used to mean ball. In the field of topology the closed -dimensional ball is often denoted as or while the open -dimensional ball is or .
In Euclidean n-space, an (open) n-ball of radius r and center x is the set of all points of distance less than r from x. A closed n-ball of radius r is the set of all points of distance less than or equal to r away from x.
In Euclidean n-space, every ball is bounded by a hypersphere. The ball is a bounded interval when n = 1, is a disk bounded by a circle when n = 2, and is bounded by a sphere when n = 3.
Volume of an n-ball
The n-dimensional volume of a Euclidean ball of radius r in n-dimensional Euclidean space is:
where Γ is Leonhard Euler's gamma function (which can be thought of as an extension of the factorial function to fractional arguments). Using explicit formulas for particular values of the gamma function at the integers and half integers gives formulas for the volume of a Euclidean ball that do not require an evaluation of the gamma function. These are:
In the formula for odd-dimensional volumes, the double factorial (2k + 1)!! is defined for odd integers 2k + 1 as (2k + 1)!! = 1 ⋅ 3 ⋅ 5 ⋅ ⋯ ⋅ (2k − 1) ⋅ (2k + 1).
Let (M, d) be a metric space, namely a set M with a metric (distance function) d.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related courses (9)

Related publications (31)

Related people (1)

Related lectures (34)

Related concepts (28)

Ontological neighbourhood

MATH-106(e): Analysis II

Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles de plusieurs
variables.

MATH-513: Metric embeddings

The course aims to introduce the basic concepts and results on metric embeddings, or more precisely on approximate embeddings. This area has been under rapid development since the 90's and it has stro

MATH-201: Analysis III

Calcul différentiel et intégral.
Eléments d'analyse complexe.

Fubini Generalized

Explores Fubini's theorem, extending integration to complex regions like closed unit balls.

Physics Mini-Test: Trajectory Analysis

Explores the analysis of a ball's trajectory in contact with a beam, focusing on forces, angles, and motion equations.

Closed Surfaces and Integrals

Explains closed surfaces like spheres, cubes, and cones without covers, and their traversal and removal of edges.

In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an -dimensional manifold, or -manifold for short, is a topological space with the property that each point has a neighborhood that is homeomorphic to an open subset of -dimensional Euclidean space. One-dimensional manifolds include lines and circles, but not lemniscates. Two-dimensional manifolds are also called surfaces. Examples include the plane, the sphere, and the torus, and also the Klein bottle and real projective plane.

In mathematical analysis and related areas of mathematics, a set is called bounded if it is, in a certain sense, of finite measure. Conversely, a set which is not bounded is called unbounded. The word "bounded" makes no sense in a general topological space without a corresponding metric. Boundary is a distinct concept: for example, a circle in isolation is a boundaryless bounded set, while the half plane is unbounded yet has a boundary. A bounded set is not necessarily a closed set and vice versa.

In mathematics, a Euclidean plane is a Euclidean space of dimension two, denoted E2. It is a geometric space in which two real numbers are required to determine the position of each point. It is an affine space, which includes in particular the concept of parallel lines. It has also metrical properties induced by a distance, which allows to define circles, and angle measurement. A Euclidean plane with a chosen Cartesian coordinate system is called a Cartesian plane.

We study the behaviour of a natural measure defined on the leaves of the genealogical tree of some branching processes, namely self-similar growth-fragmentation processes. Each particle, or cell, is attributed a positive mass that evolves in continuous tim ...

2022We construct a regular random projection of a metric space onto a closed doubling subset and use it to linearly extend Lipschitz and C-1 functions. This way we prove more directly a result by Lee and Naor [5] and we generalize the C-l extension theorem by ...

The conjugate heat transfer in mixtures of a fluid and single granular clusters is studied in this paper using a novel lattice Boltzmann method (LBM) programmed for parallel computation on the graphics processing unit (GPU). The LBM is validated for heat c ...