MATH-476: Optimal transportThe first part is devoted to Monge and Kantorovitch problems, discussing the existence and the properties of the optimal plan. The second part introduces the Wasserstein distance on measures and devel
MICRO-310(b): Signals and systems I (for SV)Présentation des concepts et des outils de base pour l'analyse et la caractérisation des signaux, la conception de systèmes de traitement et la modélisation linéaire de systèmes pour les étudiants en
MATH-329: Continuous optimizationThis course introduces students to continuous, nonlinear optimization. We study the theory of optimization with continuous variables (with full proofs), and we analyze and implement important algorith
PHYS-428: Relativity and cosmology IIThis course is the basic introduction to modern cosmology. It introduces students to the main concepts and formalism of cosmology, the observational status of Hot Big Bang theory
and discusses major
MATH-506: Topology IV.b - cohomology ringsSingular cohomology is defined by dualizing the singular chain complex for spaces. We will study its basic properties, see how it acquires a multiplicative structure and becomes a graded commutative a
MATH-467: Probabilistic methods in combinatoricsThe 'probabilistic method' is a fundamental tool in combinatorics. The basic idea is as follows: to prove that an object (for example, graph) with certain properties exists, it suffices to prove that
MATH-106(c): Analysis IIÉtudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles de plusieurs
variables.