COM-406: Foundations of Data ScienceWe discuss a set of topics that are important for the understanding of modern data science but that are typically not taught in an introductory ML course. In particular we discuss fundamental ideas an
MATH-486: Statistical mechanics and Gibbs measuresThis course provides a rigorous introduction to the ideas, methods and results of classical statistical mechanics, with an emphasis on presenting the central tools for the probabilistic description of
MATH-225: Topology II - fundamental groupsOn étudie des notions de topologie générale: unions et quotients d'espaces topologiques; on approfondit les notions de revêtements et de groupe fondamental,et d'attachements de cellules et on démontre
CS-433: Machine learningMachine learning methods are becoming increasingly central in many sciences and applications. In this course, fundamental principles and methods of machine learning will be introduced, analyzed and pr
PHYS-426: Quantum physics IVIntroduction to the path integral formulation of quantum mechanics. Derivation of the perturbation expansion of Green's functions in terms of Feynman diagrams. Several applications will be presented,
ME-523: Nonlinear Control SystemsLes systèmes non linéaires sont analysés en vue d'établir des lois de commande. On présente la stabilité au sens de Lyapunov, ainsi que des méthodes de commande géométrique (linéarisation exacte). Div
PHYS-425: Quantum physics IIITo introduce several advanced topics in quantum physics, including
semiclassical approximation, path integral, scattering theory, and
relativistic quantum mechanics