MATH-506: Topology IV.b - cohomology ringsSingular cohomology is defined by dualizing the singular chain complex for spaces. We will study its basic properties, see how it acquires a multiplicative structure and becomes a graded commutative a
PHYS-314: Quantum physics IIThe aim of this course is to familiarize the student with the concepts, methods and consequences of quantum physics.
MATH-333: Selected chapters of geometryAprès avoir traité la théorie de base des courbes et surfaces dans le plan et l'espace euclidien,
nous étudierons certains chapitres choisis : surfaces minimales, surfaces à courbure moyenne constante
PHYS-432: Quantum field theory IIThe goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions such as Quantum Electrodynamics.
CH-250: Mathematical methods in chemistryThis course consists of two parts. The first part covers basic concepts of molecular symmetry and the application of group theory to describe it. The second part introduces Laplace transforms and Four
MATH-494: Topics in arithmetic geometryP-adic numbers are a number theoretic analogue of the real numbers, which interpolate between arithmetics, analysis and geometry. In this course we study their basic properties and give various applic