**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Lecture# Geodetic References: Altitudes

Description

This lecture covers the concept of geoid elevation, orthometric altitude, and altitudes in the context of satellite tracking. It discusses the Swiss local geoid, differences in altitude systems, and the application of orthometric corrections to establish a new frame of reference.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Instructor

In course

ENV-340: Fundamentals of satellite positioning

Bases des références géodésiques, principe de mesure utilisé en localisation par satellites et de l'estimation de la qualité de positions GNSS (Global Navigation Satellites Systems).

Related concepts (20)

Orthometric height

The orthometric height is the vertical distance H along the plumb line from a point of interest to a reference surface known as the geoid, the vertical datum that approximates mean sea level. Orthometric height is one of the scientific formalizations of a laypersons' "height above sea level", along with other types of heights in Geodesy. In the US, the current NAVD88 datum is tied to a defined elevation at one point rather than to any location's exact mean sea level.

Vertical position

Vertical position or vertical location is a position along a vertical direction above or below a given vertical datum (reference level). Vertical distance or vertical separation is the distance between two vertical positions. Many vertical coordinates exist for expressing vertical position: depth, height, altitude, elevation, etc. Points lying on an equigeopotential surface are said to be on the same vertical level, as in a water level.

Geodetic coordinates

Geodetic coordinates are a type of curvilinear orthogonal coordinate system used in geodesy based on a reference ellipsoid. They include geodetic latitude (north/south) φ, longitude (east/west) λ, and ellipsoidal height h (also known as geodetic height). The triad is also known as Earth ellipsoidal coordinates (not to be confused with ellipsoidal-harmonic coordinates). Longitude measures the rotational angle between the zero meridian and the measured point. By convention for the Earth, Moon and Sun, it is expressed in degrees ranging from −180° to +180°.

Normal height

Normal heights is a type of height above sea level introduced by Mikhail Molodenskii. The normal height (or ) of a point is computed as the ratio of a point's geopotential number (i.e. its geopotential difference with that of sea level), by the average, normal gravity computed along the plumb line of the point. (More precisely, along the ellipsoidal normal, averaging over the height range from 0 — on the reference ellipsoid — to ; the procedure is thus recursive.) Normal heights are thus dependent upon the reference ellipsoid chosen.

Height above mean sea level

Height above mean sea level is a measure of the vertical distance (height, elevation or altitude) of a location in reference to a historic mean sea level taken as a vertical datum. In geodesy, it is formalized as orthometric heights. The quantity is called "metres above mean sea level" in the metric system, while in United States customary and imperial units it would be called "feet above mean sea level". Mean sea levels are affected by climate change and other factors and change over time.