**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Lecture# Reduced Echelon Matrices: Properties and Uniqueness

Description

This lecture covers the properties and uniqueness of reduced echelon matrices, including the definition of a reduced echelon matrix, the Gauss theorem stating every matrix is row-equivalent to a reduced echelon matrix, and the uniqueness of the reduced echelon form. It also discusses the criterion of invertibility by elementary operations and the generation of the identity matrix through row equivalence.

Login to watch the video

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

In course

Instructors (2)

Related concepts (42)

MATH-110(a): Advanced linear algebra I

L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et de démontrer rigoureusement les résultats principaux de ce sujet.

,

Identity matrix

In linear algebra, the identity matrix of size is the square matrix with ones on the main diagonal and zeros elsewhere. It has unique properties, for example when the identity matrix represents a geometric transformation, the object remains unchanged by the transformation. In other contexts, it is analogous to multiplying by the number 1. The identity matrix is often denoted by , or simply by if the size is immaterial or can be trivially determined by the context.

Zero matrix

In mathematics, particularly linear algebra, a zero matrix or null matrix is a matrix all of whose entries are zero. It also serves as the additive identity of the additive group of matrices, and is denoted by the symbol or followed by subscripts corresponding to the dimension of the matrix as the context sees fit. Some examples of zero matrices are The set of matrices with entries in a ring K forms a ring . The zero matrix in is the matrix with all entries equal to , where is the additive identity in K.

Involutory matrix

In mathematics, an involutory matrix is a square matrix that is its own inverse. That is, multiplication by the matrix A is an involution if and only if A2 = I, where I is the n × n identity matrix. Involutory matrices are all square roots of the identity matrix. This is simply a consequence of the fact that any invertible matrix multiplied by its inverse is the identity. The 2 × 2 real matrix is involutory provided that The Pauli matrices in M(2, C) are involutory: One of the three classes of elementary matrix is involutory, namely the row-interchange elementary matrix.

Invertible matrix

In linear algebra, an n-by-n square matrix A is called invertible (also nonsingular, nondegenerate or (rarely used) regular), if there exists an n-by-n square matrix B such that where In denotes the n-by-n identity matrix and the multiplication used is ordinary matrix multiplication. If this is the case, then the matrix B is uniquely determined by A, and is called the (multiplicative) inverse of A, denoted by A−1. Matrix inversion is the process of finding the matrix B that satisfies the prior equation for a given invertible matrix A.

Matrix ring

In abstract algebra, a matrix ring is a set of matrices with entries in a ring R that form a ring under matrix addition and matrix multiplication . The set of all n × n matrices with entries in R is a matrix ring denoted Mn(R) (alternative notations: Matn(R) and Rn×n). Some sets of infinite matrices form infinite matrix rings. Any subring of a matrix ring is a matrix ring. Over a rng, one can form matrix rngs. When R is a commutative ring, the matrix ring Mn(R) is an associative algebra over R, and may be called a matrix algebra.