**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Lecture# Forced Oscillator Regime: Generalized Conservative Approach

Description

This lecture covers the formulation of the forced oscillator regime in vibratory mechanics, focusing on the decoupling of the forced regime by decomposition and the diagonal matrix of modal rigidities. It explains the solution of the forced regime using Laplace or convolution integral methods, with a return to spatial coordinates and consideration of non-zero initial conditions. The lecture also delves into the concept of a generalized conservative approach of order n in the modal base, emphasizing clean pulsations and independence. Additionally, it explores the EPFL transfer function and the return to the physical base through a linear combination of modal solutions.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

In course

Instructor

Related concepts (84)

ME-332: Mechanical vibrations

Dans ce cours on étudie la dynamique modale des structures mécaniques. Conceptes clés comme Mode Normale, Mass et Raideur effective, et Fréquences Propres sont appris pendant ce cours.

Linear combination

In mathematics, a linear combination is an expression constructed from a set of terms by multiplying each term by a constant and adding the results (e.g. a linear combination of x and y would be any expression of the form ax + by, where a and b are constants). The concept of linear combinations is central to linear algebra and related fields of mathematics. Most of this article deals with linear combinations in the context of a vector space over a field, with some generalizations given at the end of the article.

Diagonal matrix

In linear algebra, a diagonal matrix is a matrix in which the entries outside the main diagonal are all zero; the term usually refers to square matrices. Elements of the main diagonal can either be zero or nonzero. An example of a 2×2 diagonal matrix is , while an example of a 3×3 diagonal matrix is. An identity matrix of any size, or any multiple of it (a scalar matrix), is a diagonal matrix. A diagonal matrix is sometimes called a scaling matrix, since matrix multiplication with it results in changing scale (size).

Linear span

In mathematics, the linear span (also called the linear hull or just span) of a set S of vectors (from a vector space), denoted span(S), is defined as the set of all linear combinations of the vectors in S. For example, two linearly independent vectors span a plane. The linear span can be characterized either as the intersection of all linear subspaces that contain S, or as the smallest subspace containing S. The linear span of a set of vectors is therefore a vector space itself. Spans can be generalized to matroids and modules.

Affine combination

In mathematics, an affine combination of x1, ..., xn is a linear combination such that Here, x1, ..., xn can be elements (vectors) of a vector space over a field K, and the coefficients are elements of K. The elements x1, ..., xn can also be points of a Euclidean space, and, more generally, of an affine space over a field K. In this case the are elements of K (or for a Euclidean space), and the affine combination is also a point. See for the definition in this case.

Conical combination

Given a finite number of vectors in a real vector space, a conical combination, conical sum, or weighted sum of these vectors is a vector of the form where are non-negative real numbers. The name derives from the fact that a conical sum of vectors defines a cone (possibly in a lower-dimensional subspace). The set of all conical combinations for a given set S is called the conical hull of S and denoted cone(S) or coni(S). That is, By taking k = 0, it follows the zero vector (origin) belongs to all conical hulls (since the summation becomes an empty sum).

Related lectures (1)

Circular Motion and Harmonic OscillatorPHYS-101(f): General physics : mechanics

Explores circular motion, harmonic oscillators, and double springs, elucidating the physics principles behind them.