**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Lecture# Seifert van Kampen: the point

Description

This lecture presents the proof of the Seifert van Kampen theorem, focusing on a diagram involving spaces X, A, B, and C, and the homomorphisms induced by continuous maps. The theorem states that the induced application is an isomorphism, connecting the free product of fundamental groups of A and B with the fundamental group of X. The instructor explains the relationship between different homomorphisms and demonstrates that one of them is indeed an isomorphism, using a three-dimensional diagram to illustrate the concept.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

In course

Instructor

MATH-225: Topology

On étudie des notions de topologie générale: unions et quotients d'espaces topologiques; on approfondit les notions de revêtements et de groupe fondamental,et d'attachements de cellules et on démontre

Related concepts (21)

Fundamental theorem on homomorphisms

In abstract algebra, the fundamental theorem on homomorphisms, also known as the fundamental homomorphism theorem, or the first isomorphism theorem, relates the structure of two objects between which a homomorphism is given, and of the kernel and of the homomorphism. The homomorphism theorem is used to prove the isomorphism theorems. Given two groups G and H and a group homomorphism f : G → H, let N be a normal subgroup in G and φ the natural surjective homomorphism G → G/N (where G/N is the quotient group of G by N).

Homomorphism

In algebra, a homomorphism is a structure-preserving map between two algebraic structures of the same type (such as two groups, two rings, or two vector spaces). The word homomorphism comes from the Ancient Greek language: ὁμός () meaning "same" and μορφή () meaning "form" or "shape". However, the word was apparently introduced to mathematics due to a (mis)translation of German ähnlich meaning "similar" to ὁμός meaning "same". The term "homomorphism" appeared as early as 1892, when it was attributed to the German mathematician Felix Klein (1849–1925).

Topology

In mathematics, topology (from the Greek words τόπος, and λόγος) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing holes, opening holes, tearing, gluing, or passing through itself. A topological space is a set endowed with a structure, called a topology, which allows defining continuous deformation of subspaces, and, more generally, all kinds of continuity.

Group homomorphism

In mathematics, given two groups, (G, ∗) and (H, ·), a group homomorphism from (G, ∗) to (H, ·) is a function h : G → H such that for all u and v in G it holds that where the group operation on the left side of the equation is that of G and on the right side that of H. From this property, one can deduce that h maps the identity element eG of G to the identity element eH of H, and it also maps inverses to inverses in the sense that Hence one can say that h "is compatible with the group structure".

Final topology

In general topology and related areas of mathematics, the final topology (or coinduced, strong, colimit, or inductive topology) on a set with respect to a family of functions from topological spaces into is the finest topology on that makes all those functions continuous. The quotient topology on a quotient space is a final topology, with respect to a single surjective function, namely the quotient map. The disjoint union topology is the final topology with respect to the inclusion maps.

Related lectures (37)

Fundamental GroupsMATH-410: Riemann surfaces

Explores fundamental groups, homotopy classes, and coverings in connected manifolds.

Group CohomologyMATH-506: Topology IV.b - cohomology rings

Covers the concept of group cohomology, focusing on chain complexes, cochain complexes, cup products, and group rings.

Topology: Continuous DeformationsMATH-124: Geometry for architects I

Explores continuous deformations in topology, emphasizing the preservation of shape characteristics during transformations.

Homology of Riemann SurfacesMATH-410: Riemann surfaces

Explores the homology of Riemann surfaces, including singular homology and the standard n-simplex.

Isomorphism in Aut(p)MATH-225: Topology

Explores isomorphism between Aut(p) and a Galois covering through topology course notes.