This lecture covers the proof of Hensel's Lemma and a review of field theory, including the recursive formula for Newton's approximation, Teichmüller lifts, p-adic complex numbers, and constructing analogues for Op.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Sit est voluptate aliquip cillum et. Cupidatat magna sunt sint quis consectetur velit id. Reprehenderit qui adipisicing ullamco pariatur sit aliquip consectetur aliquip voluptate id magna aute minim occaecat. Ullamco elit sit consequat magna. Laboris dolore ea exercitation sint aliqua elit eu cupidatat ex labore labore. Nisi id elit laboris non eiusmod occaecat anim velit cillum enim ipsum nostrud aute sunt. Est amet quis quis ipsum excepteur elit consectetur ea Lorem nisi consequat exercitation ut esse.
Explores Galois theory fundamentals, including separable elements, decomposition fields, and Galois groups, emphasizing the importance of finite degree extensions and the structure of Galois extensions.