Lecture

Bias-Variance Tradeoff in Machine Learning

In course
DEMO: duis culpa fugiat
Consectetur nulla velit incididunt adipisicing deserunt aliqua consectetur. Dolore est duis consectetur fugiat voluptate id ullamco incididunt mollit do ad dolor. Cillum labore esse consectetur enim culpa officia et deserunt eiusmod ipsum consectetur pariatur ex. Ullamco dolore veniam laboris sit duis anim deserunt. Consequat qui et quis id exercitation proident pariatur mollit ipsum aute elit. Qui labore enim pariatur aliqua eu.
Login to see this section
Description

This lecture explores the Bias-Variance tradeoff in machine learning, focusing on how the risk changes with the complexity of the model class. Through a small experiment on 1D-regression, the instructor demonstrates the impact of model complexity on fitting. The lecture delves into the decomposition of error, emphasizing the balance between bias and variance. By analyzing the Bias-Variance Decomposition, the instructor highlights the importance of selecting methods that achieve low bias and variance simultaneously. The lecture concludes with discussions on noise as a lower bound on achievable error, the implications of bias and variance on model predictions, and the tradeoff between model complexity and error.

This video is available exclusively on Mediaspace for a restricted audience. Please log in to MediaSpace to access it if you have the necessary permissions.

Watch on Mediaspace
Instructors (2)
eiusmod tempor
Adipisicing non exercitation consequat ullamco. Consequat reprehenderit ut ut eu ad adipisicing occaecat sint laboris qui. Consequat consequat nisi exercitation tempor cillum elit.
id eiusmod Lorem aute
Ut sint consectetur consequat consectetur. Minim minim consequat duis reprehenderit sit irure incididunt veniam ut velit. Ipsum cillum id irure voluptate labore consequat ullamco. Sunt reprehenderit commodo et cillum fugiat minim amet irure esse amet do ipsum officia aliquip. Pariatur aute velit consectetur eiusmod eiusmod reprehenderit id commodo ex eu id sunt nisi.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (50)
Bias-Variance Tradeoff in Machine Learning
Discusses the bias-variance tradeoff in machine learning, emphasizing the balance between model complexity and prediction accuracy.
Bias-Variance Trade-off
Explores the impact of model complexity on prediction quality through the bias-variance trade-off, emphasizing the need to balance bias and variance for optimal performance.
Bias-Variance Tradeoff in Machine Learning
Explores the Bias-Variance tradeoff in machine learning, emphasizing the need to balance bias and variance for optimal model performance.
Bias-Variance Trade-Off
Explores underfitting, overfitting, and the bias-variance trade-off in machine learning models.
Generalization Theory
Explores generalization theory in machine learning, addressing challenges in higher-dimensional spaces and the bias-variance tradeoff.
Show more