Offers a comprehensive introduction to Data Science, covering Python, Numpy, Pandas, Matplotlib, and Scikit-learn, with a focus on practical exercises and collaborative work.
Covers data science tools, Hadoop, Spark, data lake ecosystems, CAP theorem, batch vs. stream processing, HDFS, Hive, Parquet, ORC, and MapReduce architecture.
Focuses on the practical application of Digital Image Correlation for civil engineers, covering measuring displacement fields and computing strain fields.