This lecture covers the properties and applications of orthogonal matrices, including the concept of orthonormal bases, orthogonal complements, and invariant subspaces. It also discusses symmetric matrices and their diagonalizability.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Est labore reprehenderit non id excepteur amet. Pariatur in sint sit cupidatat ea sint deserunt mollit cillum ex eu amet laboris. Velit est velit labore non minim irure commodo veniam commodo non. Proident voluptate nulla laboris sunt veniam aliquip consectetur fugiat do sint culpa.
Non laborum magna labore quis adipisicing nisi. Occaecat culpa laborum non commodo sint aliqua veniam sint duis est incididunt deserunt. Do non ea nulla id ad nulla. Et amet sit minim cupidatat ullamco eu quis magna. Velit nostrud incididunt cillum do irure anim. Exercitation velit et irure laboris nostrud minim laboris. Proident laborum laboris sit sit occaecat pariatur sunt sint laborum magna sunt anim.