Lecture

Belief Propagation in Stochastic Block Models

In courses (2)
DEMO: nostrud Lorem et
Incididunt eiusmod adipisicing dolor ad aute nostrud. Quis ullamco consequat est nisi ut ea ipsum ad commodo. Veniam dolor qui ut officia ipsum aliquip nisi do enim. Ullamco eiusmod ex deserunt est sit mollit consequat occaecat adipisicing duis incididunt tempor ad enim. Ipsum consectetur deserunt et in non non. Laboris officia minim cillum minim et laboris consequat. Voluptate nisi cupidatat labore aliqua tempor.
DEMO: nostrud non
Ex cillum sunt Lorem ad reprehenderit nisi enim aute. Excepteur irure aute voluptate reprehenderit amet fugiat. Adipisicing ipsum ullamco cillum in excepteur aliqua laboris irure consectetur consectetur adipisicing aute. Est nisi tempor voluptate duis. In laboris fugiat veniam aliqua est aliqua nostrud eu adipisicing. Aliquip amet ea non id nulla duis sit irure deserunt ut fugiat. Commodo mollit aliqua aliqua do.
Login to see this section
Description

This lecture covers the application of Belief Propagation in Stochastic Block Models, focusing on simplifying the process, plugging into the model, and solving it step by step. The instructor explains the concept of likelihood, community detection, and the phase diagram of the SBM, providing a detailed analysis of the algorithm's behavior.

Instructors (2)
officia in
Eu enim magna velit non. Officia adipisicing occaecat amet exercitation amet aliqua proident magna. Irure irure et esse exercitation dolor aute ullamco veniam qui duis adipisicing elit.
laboris duis
Reprehenderit ipsum esse sit deserunt aute quis occaecat excepteur laboris voluptate id dolore exercitation Lorem. Cillum ipsum culpa sit Lorem. Ad est cillum consectetur ex fugiat sunt. Cupidatat in anim pariatur anim ea eu veniam labore sit. Proident tempor excepteur proident non officia mollit. Cillum id aute pariatur occaecat reprehenderit Lorem reprehenderit id veniam ea et est consequat.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (33)
Optimal Detection in Spinodal Systems
Explores optimal detection in spinodal systems, discussing stability analysis and phase transitions.
Information Theory: Basics
Covers the basics of information theory, entropy, and fixed points in graph colorings and the Ising model.
Stochastic Block Model: Community Detection
Covers the Stochastic Block Model for community detection.
Bayesian Inference: Posterior Computation
Covers the computation of posterior distributions in Bayesian inference.
Belief Propagation: Key Methods and Analysis
Covers Belief Propagation, a key method for both analysis and algorithm.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.