Lecture

Homotopical Algebra: The Homotopy Category of a Model Category

In course
DEMO: velit nisi id cillum
Consectetur in magna aliquip qui et esse. Nisi mollit cillum amet voluptate enim. Reprehenderit aute incididunt dolor id tempor cupidatat. Incididunt eu qui velit non voluptate.
Login to see this section
Description

This lecture focuses on proving that the category and functor constructed in the previous lecture indeed form a localization of the model category at its subcategory of weak equivalences, establishing that the category constructed is the homotopy category. The instructor discusses the construction of the homotopy category, emphasizing the importance of weak equivalences. Various properties of the homotopy category are explored, including the preservation of composition and the uniqueness of certain functors. The lecture concludes with a discussion on functors between homotopy categories, providing a comprehensive overview of the key concepts in homotopical algebra.

Instructor
consequat et
Nulla esse reprehenderit elit cupidatat minim quis anim cupidatat. Consequat esse ad amet occaecat proident esse anim laborum fugiat laborum ea sit pariatur nostrud. Do do exercitation adipisicing elit eiusmod exercitation esse Lorem ipsum dolore labore. Nulla adipisicing dolor sint consequat eiusmod elit sunt duis deserunt deserunt.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.