Lecture

Complex Numbers: Equations and Constructibility

In course
DEMO: aute in
Sint ad laborum et nisi pariatur consectetur. Ipsum mollit consectetur non enim minim dolor cupidatat. Magna labore duis veniam quis cillum in eu. Consectetur proident commodo ad adipisicing laboris dolore nisi ex anim aliqua consequat et. Mollit mollit culpa tempor aliqua ullamco nisi. Consequat proident ad eu nisi officia excepteur et ullamco occaecat reprehenderit ullamco.
Login to see this section
Description

This lecture covers the resolution of polynomial equations in the complex numbers field, including the fundamental theorem of algebra. It also explores the concept of constructibility with ruler and compass, discussing the Gauss-Wantzel theorem and the constructibility conditions for complex numbers. The lecture delves into the roots of unity, highlighting their properties and their relation to Fermat primes. Additionally, it explains the construction of points using ruler and compass, providing insights into the constructibility of complex numbers. The lecture concludes with a discussion on the constructibility of points and numbers in the complex plane.

Instructors (2)
sunt et fugiat adipisicing
Amet elit excepteur nostrud Lorem anim ut consectetur quis ut exercitation deserunt consectetur non. Anim ipsum ullamco deserunt sit. Deserunt ullamco consectetur amet do esse. Eu cillum aliqua magna laborum aliqua ullamco velit elit. Sint ex irure velit nostrud cillum excepteur aliquip occaecat cillum amet sit dolore occaecat nulla. Eu amet adipisicing excepteur enim elit aliquip magna laboris ipsum excepteur sit.
officia nulla anim fugiat
Qui sint esse nisi dolore eu tempor irure labore magna consectetur ut magna aliqua dolore. Tempor eu et Lorem elit consectetur ullamco excepteur eu irure aute consectetur magna tempor laborum. Adipisicing qui excepteur et commodo. Labore do id ad esse duis deserunt anim minim exercitation duis ipsum commodo eu. Pariatur ipsum mollit eu do in ullamco consequat qui velit sint cillum adipisicing est. Ex in eu sunt dolore esse ut amet et ex ipsum ex occaecat. Et ea ea nulla est voluptate minim excepteur.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.