**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Lecture# The Topological Künneth Theorem

Description

This lecture covers the topological Künneth Theorem, focusing on identifying spaces, applying algebraic Künneth Theorem, and proving the cross product properties. The instructor explains the concepts using acyclic models and natural transformations, emphasizing the commutativity of diagrams and the homotopy equivalence of augmented chain complexes.

Login to watch the video

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Instructor

In course

MATH-506: Topology IV.b - cohomology rings

Singular cohomology is defined by dualizing the singular chain complex for spaces. We will study its basic properties, see how it acquires a multiplicative structure and becomes a graded commutative a

Related concepts (362)

Sheaf (mathematics)

In mathematics, a sheaf (: sheaves) is a tool for systematically tracking data (such as sets, abelian groups, rings) attached to the open sets of a topological space and defined locally with regard to them. For example, for each open set, the data could be the ring of continuous functions defined on that open set. Such data is well behaved in that it can be restricted to smaller open sets, and also the data assigned to an open set is equivalent to all collections of compatible data assigned to collections of smaller open sets covering the original open set (intuitively, every piece of data is the sum of its parts).

Motivic cohomology

Motivic cohomology is an invariant of algebraic varieties and of more general schemes. It is a type of cohomology related to motives and includes the Chow ring of algebraic cycles as a special case. Some of the deepest problems in algebraic geometry and number theory are attempts to understand motivic cohomology. Let X be a scheme of finite type over a field k. A key goal of algebraic geometry is to compute the Chow groups of X, because they give strong information about all subvarieties of X.

Topology

In mathematics, topology (from the Greek words τόπος, and λόγος) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing holes, opening holes, tearing, gluing, or passing through itself. A topological space is a set endowed with a structure, called a topology, which allows defining continuous deformation of subspaces, and, more generally, all kinds of continuity.

Mathematical proof

A mathematical proof is a deductive argument for a mathematical statement, showing that the stated assumptions logically guarantee the conclusion. The argument may use other previously established statements, such as theorems; but every proof can, in principle, be constructed using only certain basic or original assumptions known as axioms, along with the accepted rules of inference. Proofs are examples of exhaustive deductive reasoning which establish logical certainty, to be distinguished from empirical arguments or non-exhaustive inductive reasoning which establish "reasonable expectation".

Proof theory

Proof theory is a major branch of mathematical logic and theoretical computer science within which proofs are treated as formal mathematical objects, facilitating their analysis by mathematical techniques. Proofs are typically presented as inductively-defined data structures such as lists, boxed lists, or trees, which are constructed according to the axioms and rules of inference of a given logical system. Consequently, proof theory is syntactic in nature, in contrast to model theory, which is semantic in nature.

Related lectures (1,000)

Acyclic Models: Cup Product and Cohomology

Covers the cup product on cohomology, acyclic models, and the universal coefficient theorem.

Cross Product in Cohomology

Explores the cross product in cohomology, covering its properties and applications in homotopy.

Bar Construction: Homology Groups and Classifying Space

Covers the bar construction method, homology groups, classifying space, and the Hopf formula.

Graded Ring Structure on Cohomology

Explores the associative and commutative properties of the cup product in cohomology, with a focus on graded structures.

Steenrod Squares

Covers the concept of Steenrod Squares and their applications in stable cohomology operations.