**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Lecture# Parts and Vectors in Coordinates

Description

This lecture covers the concept of parts and vectors in coordinates, discussing landmarks, coordinate systems, frames, and terminology related to coordinates. It explains how to define angles and vectors in an orthonormal reference frame, as well as the properties of direct and indirect orthonormal reference systems. The lecture also explores the calculation of distances and angles in different coordinate systems, emphasizing the importance of understanding geometric angles and orthogonal vectors.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (205)

Graph embedding

In topological graph theory, an embedding (also spelled imbedding) of a graph on a surface is a representation of on in which points of are associated with vertices and simple arcs (homeomorphic images of ) are associated with edges in such a way that: the endpoints of the arc associated with an edge are the points associated with the end vertices of no arcs include points associated with other vertices, two arcs never intersect at a point which is interior to either of the arcs. Here a surface is a compact, connected -manifold.

Lattice graph

In graph theory, a lattice graph, mesh graph, or grid graph is a graph whose drawing, embedded in some Euclidean space \mathbb{R}^n, forms a regular tiling. This implies that the group of bijective transformations that send the graph to itself is a lattice in the group-theoretical sense. Typically, no clear distinction is made between such a graph in the more abstract sense of graph theory, and its drawing in space (often the plane or 3D space). This type of graph may more shortly be called just a lattice, mesh, or grid.

Bipartite graph

In the mathematical field of graph theory, a bipartite graph (or bigraph) is a graph whose vertices can be divided into two disjoint and independent sets and , that is, every edge connects a vertex in to one in . Vertex sets and are usually called the parts of the graph. Equivalently, a bipartite graph is a graph that does not contain any odd-length cycles. The two sets and may be thought of as a coloring of the graph with two colors: if one colors all nodes in blue, and all nodes in red, each edge has endpoints of differing colors, as is required in the graph coloring problem.

Graph coloring

In graph theory, graph coloring is a special case of graph labeling; it is an assignment of labels traditionally called "colors" to elements of a graph subject to certain constraints. In its simplest form, it is a way of coloring the vertices of a graph such that no two adjacent vertices are of the same color; this is called a vertex coloring. Similarly, an edge coloring assigns a color to each edge so that no two adjacent edges are of the same color, and a face coloring of a planar graph assigns a color to each face or region so that no two faces that share a boundary have the same color.

Graph (discrete mathematics)

In discrete mathematics, and more specifically in graph theory, a graph is a structure amounting to a set of objects in which some pairs of the objects are in some sense "related". The objects correspond to mathematical abstractions called vertices (also called nodes or points) and each of the related pairs of vertices is called an edge (also called link or line). Typically, a graph is depicted in diagrammatic form as a set of dots or circles for the vertices, joined by lines or curves for the edges.

Related lectures (898)

Analytical Study of Plan: Points, Lines

Covers the analytical study of the plan, focusing on points and lines.

Vector Algebra: Scalar Product

Explores the scalar product of vectors, including properties and calculation methods.

Linear Transformations: Matrices and Kernels

Covers linear transformations, matrices, kernels, and properties of invertible matrices.

Vectors: Coordinate Calculations

Covers calculations in coordinates for vectors, including bases, scalar product, and determinants, with geometric interpretations and examples.

Geometry of the Triangle

Covers the geometry of the triangle, including inequalities, heights, and centers.