**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Lecture# Vector Algebra: Scalar Product

Description

This lecture covers the concept of scalar product of vectors, including its definition, properties, and geometric interpretation. The instructor explains how to calculate the scalar product, its algebraic properties, and how to find the projection formula. Examples and proofs are provided to illustrate the concepts.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (139)

Lattice graph

In graph theory, a lattice graph, mesh graph, or grid graph is a graph whose drawing, embedded in some Euclidean space \mathbb{R}^n, forms a regular tiling. This implies that the group of bijective transformations that send the graph to itself is a lattice in the group-theoretical sense. Typically, no clear distinction is made between such a graph in the more abstract sense of graph theory, and its drawing in space (often the plane or 3D space). This type of graph may more shortly be called just a lattice, mesh, or grid.

Directed graph

In mathematics, and more specifically in graph theory, a directed graph (or digraph) is a graph that is made up of a set of vertices connected by directed edges, often called arcs. In formal terms, a directed graph is an ordered pair where V is a set whose elements are called vertices, nodes, or points; A is a set of ordered pairs of vertices, called arcs, directed edges (sometimes simply edges with the corresponding set named E instead of A), arrows, or directed lines.

Planar graph

In graph theory, a planar graph is a graph that can be embedded in the plane, i.e., it can be drawn on the plane in such a way that its edges intersect only at their endpoints. In other words, it can be drawn in such a way that no edges cross each other. Such a drawing is called a plane graph or planar embedding of the graph. A plane graph can be defined as a planar graph with a mapping from every node to a point on a plane, and from every edge to a plane curve on that plane, such that the extreme points of each curve are the points mapped from its end nodes, and all curves are disjoint except on their extreme points.

Bipartite graph

In the mathematical field of graph theory, a bipartite graph (or bigraph) is a graph whose vertices can be divided into two disjoint and independent sets and , that is, every edge connects a vertex in to one in . Vertex sets and are usually called the parts of the graph. Equivalently, a bipartite graph is a graph that does not contain any odd-length cycles. The two sets and may be thought of as a coloring of the graph with two colors: if one colors all nodes in blue, and all nodes in red, each edge has endpoints of differing colors, as is required in the graph coloring problem.

Graph (discrete mathematics)

In discrete mathematics, and more specifically in graph theory, a graph is a structure amounting to a set of objects in which some pairs of the objects are in some sense "related". The objects correspond to mathematical abstractions called vertices (also called nodes or points) and each of the related pairs of vertices is called an edge (also called link or line). Typically, a graph is depicted in diagrammatic form as a set of dots or circles for the vertices, joined by lines or curves for the edges.

Related lectures (1,000)

Linear Algebra: Matrix Representation

Explores linear applications in R² and matrix representation, including basis, operations, and geometric interpretation of transformations.

Parts and Vectors in Coordinates

Covers landmarks, coordinate systems, frames, and terminology in coordinates, emphasizing geometric angles and orthogonal vectors.

Linear Algebra: Matrices and Linear Applications

Covers matrices, linear applications, vector spaces, and bijective functions.

Projections and Symmetries

Explores projections on lines and symmetries in 2D space, emphasizing fixed points and symmetric matrices.

Linear Transformations: Matrices and Kernels

Covers linear transformations, matrices, kernels, and properties of invertible matrices.