**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Lecture# Geometric Proportions: Euclidean Elements

Description

This lecture covers the fundamental concepts of geometric proportions, commensurability, and the construction of equilateral triangles. It explains the mathematical definition of commensurability, the relationship between lengths and integer ratios, and the practical application of these principles in architectural design.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

In course

Instructor

Related concepts (161)

MATH-124: Geometry for architects I

Ce cours entend exposer les fondements de la géométrie à un triple titre :
1/ de technique mathématique essentielle au processus de conception du projet,
2/ d'objet privilégié des logiciels de concept

Euclid's Elements

Euclid's Elements (Στοιχεῖα Stoikheîa) is a mathematical treatise consisting of 13 books attributed to the ancient Greek mathematician Euclid in Alexandria, Ptolemaic Egypt 300 BC. It is a collection of definitions, postulates, propositions (theorems and constructions), and mathematical proofs of the propositions. The books cover plane and solid Euclidean geometry, elementary number theory, and incommensurable lines. Elements is the oldest extant large-scale deductive treatment of mathematics.

Euclid

Euclid (ˈjuːklɪd; Εὐκλείδης; 300 BC) was an ancient Greek mathematician active as a geometer and logician. Considered the "father of geometry", he is chiefly known for the Elements treatise, which established the foundations of geometry that largely dominated the field until the early 19th century. His system, now referred to as Euclidean geometry, involved new innovations in combination with a synthesis of theories from earlier Greek mathematicians, including Eudoxus of Cnidus, Hippocrates of Chios, Thales and Theaetetus.

Synthetic geometry

Synthetic geometry (sometimes referred to as axiomatic geometry or even pure geometry) is geometry without the use of coordinates. It relies on the axiomatic method for proving all results from a few basic properties initially called postulate, and at present called axioms. The term "synthetic geometry" has been coined only after the 17th century, and the introduction by René Descartes of the coordinate method, which was called analytic geometry.

Geometry

Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician who works in the field of geometry is called a geometer. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point, line, plane, distance, angle, surface, and curve, as fundamental concepts.

Algebraic geometry

Algebraic geometry is a branch of mathematics which classically studies zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros. The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations.

Related lectures (721)

Geometry: Euclidean Elements & Vitruvius

Explores Euclid's first proposition, ancient symmetria, and Vitruvius' architectural figures.

Elements of Euclidean Geometry

Introduces the Elements of Euclid, hyperboloid surface, and projective geometry, exploring historical and mathematical concepts.

Euclidean Geometry: Operations and ConstructionsMATH-124: Geometry for architects I

Covers the fundamental operations and constructions in Euclidean geometry, focusing on algebraic interpretations and ruler-and-compass constructions.

Division in Extreme and Mean Reason: Luca Pacioli's Influence

Delves into the concept of Division in Extreme and Mean Reason (DEMR) and its historical significance in geometry.

Euclidean Geometry FundamentalsMATH-124: Geometry for architects I

Introduces the fundamentals of Euclidean geometry, covering equilateral triangles, symmetries, radical axes, and ancient architectural figures.