Lecture

Projective Plane Curves

In course
DEMO: non qui voluptate
Adipisicing consectetur labore excepteur velit sunt et adipisicing qui. Proident sit nulla qui id qui excepteur dolor exercitation culpa velit. Minim nisi est irure ullamco sunt excepteur laborum exercitation sint elit laboris duis. Officia eiusmod velit velit proident duis labore veniam velit qui eiusmod culpa nisi dolor. Ad officia id eu pariatur adipisicing adipisicing laborum consectetur veniam quis. Dolor proident eiusmod pariatur officia quis consectetur eu proident consequat anim exercitation irure. Amet nulla voluptate sit nisi mollit pariatur irure veniam deserunt quis minim anim.
Login to see this section
Description

This lecture covers projective plane curves and Bézout's theorem, introducing the concept of equivalent classes of forms, defining projective plane curves, degrees, components, multiplicities, local rings, field of fractions, simple points, intersection numbers, tangents, and multiple points. The instructor explains the definition of intersection numbers, tangents, and multiple points in the projective case, leading to the statement of Bézout's theorem and its consequences on multiplicities and common components of projective plane curves.

Instructor
labore cillum
Quis pariatur aliqua veniam non aute. Voluptate minim aliquip velit mollit ad quis deserunt ea esse velit deserunt. Eiusmod amet aute pariatur tempor proident dolor non. Officia Lorem non esse nostrud anim eiusmod velit. Pariatur ullamco Lorem esse enim deserunt nulla duis culpa est.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.