Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We present in this work experiments that push the limits of cold ion spectroscopy to the study of complex peptides and small proteins in the gas phase. Although the low temperature attainable in a cold ion trap greatly simplifies the electronic spectra of ...
We describe here experiments that combine differential ion mobility, which separates conformational isomers of biomolecular ions, with electronic spectroscopy in a cold, radio-frequency ion trap. Although the low temperature attainable in a cold ion trap g ...
We employ Cold Ion Spectroscopy (CIS) in conjunction with high-Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) to study the peptide bradykinin in its doubly protonated charge state ([bk+2H]2+). Using FAIMS we partially separate the electrospray ...
We report here a new technique for spectroscopic studies of protonated, gas- phase biomolecules and demonstrate its utility by measuring highly-resolved electronic and infrared spectra of peptides of up to 17 amino acids. After UV excitation of an aromatic ...