Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We present a new walking foot-placement controller based on 3LP, a 3D model of bipedal walking that is composed of three pendulums to simulate falling, swing and torso dynamics. Taking advantage of linear equations and closed-form solutions of the 3LP mode ...
We propose a nonlinear inverse kinematics formulation which solves for positions directly. Compared to various other popular methods that integrate velocities, this formulation can better handle fast, asymmetric and singular-postured balancing tasks for hu ...
In this paper, we present a simple control framework for on-line push recovery with dynamic stepping properties. Due to relatively heavy legs in our robot, we need to take swing dynamics into account and thus use a linear model called 3LP which is composed ...
In this paper, we present a new walking controller based on 3LP model. Taking advantage of linear equations and closed-form solutions of 3LP, the proposed controller can project the state of the robot at any time during the phase back to a certain event fo ...
2016
,
In this paper, we propose a novel architecture to estimate external forces applied to a compliantly controlled balancing robot in simulations. We use similar dynamics equations used in the controller to find mismatches in the available sensory data and ass ...
In this paper, we present a new mechanical model for biped locomotion, composed of three linear pendulums (one per leg and one for the whole upper body) to describe stance, swing and torso dynamics. In addition to a double support phase, this model has dif ...
Humanoid robots have many degrees of freedom which ideally enables them to accomplish different tasks. From a control viewpoint, however, the geometric complexity makes planning and control difficult. Favoring controllability properties, it is popular to o ...
In this article, we propose a multi-staged algorithm to detect the magnitude, direction and location of a single external force applied to a humanoid robot while performing dynamic tasks. We use contact force and joint torque sensors as well as IMU to esti ...
Since the advent of energy measurement devices, gait experiments have shown that energetic economy has a large influence on human walking behavior. However, few cost models have attempted to capture the major energy components under comprehensive walking c ...
Nature Publishing Group2018
, ,
We present a new walking controller based on 3LP, a 3D model of bipedal walking that is composed of three pendulums to simulate falling, swing and torso dynamics. Taking advantage of linear equations and closed-form solutions of 3LP, the proposed controlle ...