Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The metric dimension (MD) of a graph is a combinatorial notion capturing the minimum number of landmark nodes needed to distinguish every pair of nodes in the graph based on graph distance. We study how much the MD can increase if we add a single edge to t ...
In the localization game on a graph, the goal is to find a fixed but unknown target node v* with the least number of distance queries possible. In the j-th step of the game, the player queries a single node v_j and receives, as an answer to their query, th ...
The metric dimension of a graph G is the minimal size of a subset R of vertices of G that, upon reporting their graph distance from a distinguished (source) vertex v⋆, enable unique identification of the source vertex v⋆ among all possible vertices of G. I ...
We study a phase retrieval problem in the Poisson noise model. Motivated by the PhaseLift approach, we approximate the maximum-likelihood estimator by solving a convex program with a nuclear norm constraint. While the Frank-Wolfe algorithm, together with t ...
It is a fundamental question in disease modeling how the initial seeding of an epidemic, spreading over a network, determines its final outcome. One important goal has been to find the seed configuration, which infects the most individuals. Although the id ...
We study the problem of identifying the source of a stochastic diffusion process spreading on a graph based on the arrival times of the diffusion at a few queried nodes. In a graph G=(V,E), an unknown source node v∗∈V is drawn uniformly at random, ...
Understanding epidemic propagation in large networks is an important but challenging task, especially since we usually lack information, and the information that we have is often counter-intuitive. An illustrative example is the dependence of the final siz ...