Manifold models provide low-dimensional representations that are useful for analyzing and classifying data in a transformation-invariant way. In this paper we study the problem of jointly building multiple pattern transformation manifolds from a collection of image sets, where each set consists of observations from a class of geometrically transformed signals. We build the manifolds such that each manifold approximates a different signal class. Each manifold is characterized by a representative pattern that consists of a linear combination of analytic atoms selected from a continuous dictionary manifold. We propose an iterative algorithm for jointly building multiple manifolds such that the classification accuracy is promoted in the learning of the representative patterns. We present a DC (Difference-of-Convex) optimization scheme that is applicable to a wide range of transformation and dictionary models, and demonstrate its application to transformation manifolds generated by the rotation, translation and scaling of a reference image. Experimental results suggest that the proposed method yields a high classification accuracy compared to reference methods based on individual manifold building or locally linear manifold approximations.
Daniel Kressner, Axel Elie Joseph Séguin, Gianluca Ceruti
Matthieu Wyart, Carolina Brito Carvalho dos Santos