Online Coloring of Comparability Graphs: some results
Related publications (38)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In the 1970s Erdos asked whether the chromatic number of intersection graphs of line segments in the plane is bounded by a function of their clique number. We show the answer is no. Specifically, for each positive integer k we construct a triangle-free fam ...
Several classical constructions illustrate the fact that the chromatic number of a graph may be arbitrarily large compared to its clique number. However, until very recently no such construction was known for intersection graphs of geometric objects in the ...
Given a graph G with nonnegative node labels w, a multiset of stable sets S_1,...,S_k\subseteq V(G) such that each vertex v \in V(G) is contained in w(v) many of these stable sets is called a weighted coloring. The weighted coloring number \chi_w(G) is the ...
Given a geometric hypergraph (or a range-space) H=(V,E), a coloring of its vertices is said to be conflict-free if for every hyperedge S∈E there is at least one vertex in S whose color is distinct from the colors of all other vertices i ...
For every k and r, we construct a finite family of axis-parallel rectangles in the plane such that no matter how we color them with k colors, there exists a point covered by precisely r members of the family, all of which have the same color. For r = 2, th ...
In threshold graphs one may find weights for the vertices and a threshold value t such that for any subset S of vertices, the sum of the weights is at most the threshold t if and only if the set S is a stable (independent) set. In this note we ask a simila ...
We study complexity issues related to some coloring problems in grids: we examine in particular the case of List coloring, of Precoloring extension and of (p, q)-List coloring, the case of List coloring in bipartite graphs where lists in the first part of ...
This thesis is devoted to crossing patterns of edges in topological graphs. We consider the following four problems: A thrackle is a graph drawn in the plane such that every pair of edges meet exactly once: either at a common endpoint or in a proper crossi ...
We deal with some generalizations of the graph coloring problem on classes of perfect graphs. Namely we consider the μ-coloring problem (upper bounds for the color on each vertex), the precoloring extension problem (a subset of vertices colored beforehand) ...
A set S of n points is 2-color universal for a graph G on n vertices if for every proper 2-coloring of G and for every 2-coloring of S with the same sizes of color classes as G has, G is straight-line embeddable on S. We show that the so-called double chai ...