Linear fluid-structure stability analysis with transpiration. Part I: formulation and mathematical analysis
Related publications (60)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The modeling of an incompressible fluid through a porous medium requires to deal with two systems of partial differential equations (PDEs) for the two types of media (fluid and porous). A possible way to couple theses two equations is by using the penaliza ...
When modelling the cardiovascular system, the effect of the vessel wall on the blood flow has great relevance. Arterial vessels are complex living tissues and three-dimensional specific models have been proposed to represent their behaviour. The numerical ...
In this paper we consider a Proper Generalized Decomposition method to solve the steady incompressible Navier–Stokes equations with random Reynolds number and forcing term. The aim of such technique is to compute a low-cost reduced basis approximation of t ...
We seek to study numerically two-phase flow phenomena with phase change through the finite-element method (FEM) and the arbitrary Lagrangian-Eulerian (ALE) framework. This method is based on the so-called one-fluid formulation; thus, only one set of equati ...
We analyse the existence of multiple critical points for an even functional J : H -> R in the following context: the Hilbert space H can be split into an orthogonal sum H = Y circle plus Z in such a way that inf{J(u) : u is an element of Z and parallel to ...
A system of differential equations for coupled fluid and drug transport in vascularized (malignant) tissues is derived by a multiscale expansion. We start from mass and momentum balance equations, stated in the physical domain, geometrically characterized ...
This paper is concerned with the eigenvalue decay of the solution to operator Lyapunov equations with right-hand sides of finite rank. We show that the kth (generalized) eigenvalue decays exponentially in root k, provided that the involved operator A gener ...
Euler-Bernoulli beam theory is widely used to successfully predict the linear dynamics of micro-and nanocantilever beams. However, its capacity to characterize the nonlinear dynamics of these devices has not yet been rigorously assessed, despite its use in ...
We present a new model reduction technique for steady fluid-structure interaction problems. When the fluid domain deformation is suitably parametrized, the coupling conditions between the fluid and structure can be formulated in the low-dimensional space o ...
Society for Industrial and Applied Mathematics2012
We present a Petrov-Galerkin reduced basis (RB) approximation for the parameterized Stokes equation. Our method, which relies on a reduced solution space and a parameter-dependent test space, is shown to be stable (in the sense of Babuska) and algebraicall ...