Mass preserving finite element implementations of the level set method
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
HYDROcontest is a challenge open to students from 13 universities from all over the world. The aim of the competition is to design the motorboat that best fulfills the tradeoff between high speed and low energy consumption. In order to optimize the shape o ...
Isogeometric analysis (IGA) is a computational methodology recently developed to numerically approximate Partial Differential Equation (PDEs). It is based on the isogeometric paradigm, for which the same basis functions used to represent the geometry are t ...
The goals of this project are to study and numerically solve a reduced fluid-structure interaction problem for cardiovascular applications. The first section of this project presents two test cases in order to understand the finite element method for two d ...
We seek to study numerically two-phase flow phenomena with phase change through the finite-element method (FEM) and the arbitrary Lagrangian-Eulerian (ALE) framework. This method is based on the so-called one-fluid formulation; thus, only one set of equati ...
This study derives geometric, variational discretization of continuum theories arising in fluid dynamics, magnetohydrodynamics (MHD), and the dynamics of complex fluids. A central role in these discretizations is played by the geometric formulation of flui ...
The modeling of an incompressible fluid through a porous medium requires to deal with two systems of partial differential equations (PDEs) for the two types of media (fluid and porous). A possible way to couple theses two equations is by using the penaliza ...
We consider the numerical simulation of integrated heart models for the study of the cardiac functioning with particular emphasis on the coupling of the muscle contraction, the fluid dynamics of the left ventricle, and the interaction with the valves. We a ...
The first goal of this project is to study a reduced order model for the Fluid-Structure Interaction (FSI) problem. We present the assumptions made to achieve the reduced order formulation and its fully discretized numerical scheme. One of the characterist ...
An adaptive multiresolution scheme is proposed for the numerical solution of a spatially two-dimensional model of sedimentation of suspensions of small solid particles dispersed in a viscous fluid. This model consists in a version of the Stokes equations f ...
In this paper we consider the numerical solution of the three-dimensional fluid–structure interaction problem in haemodynamics, in the case of real geometries, physiological data and finite elasticity vessel deformations. We study some new inexact schemes, ...