**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Splitting methods based on algebraic factorization for fluid-structure interaction

Abstract

We discuss in this paper the numerical approximation of fluid-structure interaction (FSI) problems dealing with strong added-mass effect. We propose new semi-implicit algorithms based on inexact block-LU factorization of the linear system obtained after the space-time discretization and linearization of the FSI problem. As a result, at each iteration the fluid velocity is computed separately from the coupled pressure-structure velocity system, reducing the computational cost. We investigate explicit-implicit decomposition through algebraic splitting techniques originally designed for the FSI problem. This approach leads to two different families of methods which extend to FSI the algebraic pressure correction method and the Yosida method, two schemes that were previously adopted for pure fluid problems. Furthermore, we have considered the inexact factorization of the fluid- structure system as a preconditioner. The numerical properties of these methods have been tested on a model problem representing a blood-vessel system.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts

Loading

Related publications

Loading

Related publications (11)

Loading

Loading

Loading

Related concepts (16)

Numerical analysis

Numerical analysis is the study of algorithms that use numerical approximation (as opposed to symbolic manipulations) for the problems of mathematical analysis (as distinguished from discrete mathema

Fluid–structure interaction

Fluid–structure interaction (FSI) is the interaction of some movable or deformable structure with an internal or surrounding fluid flow. Fluid–structure interactions can be stable or oscillatory. In o

Fluid dynamics

In physics, physical chemistry and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids—liquids and gases. It has several subdisciplines, including aer

In this thesis we address the numerical approximation of the incompressible Navier-Stokes equations evolving in a moving domain with the spectral element method and high order time integrators. First, we present the spectral element method and the basic tools to perform spectral discretizations of the Galerkin or Galerkin with Numerical Integration (G-NI) type. We cover a large range of possibilities regarding the reference elements, basis functions, interpolation points and quadrature points. In this approach, the integration and differentiation of the polynomial functions is done numerically through the help of suitable point sets. Regarding the differentiation, we present a detailed numerical study of which points should be used to attain better stability (among the choices we present). Second, we introduce the incompressible steady/unsteady Stokes and Navier-Stokes equations and their spectral approximation. In the unsteady case, we introduce a combination of Backward Differentiation Formulas and an extrapolation formula of the same order for the time integration. Once the equations are discretized, a linear system must be solved to obtain the approximate solution. In this context, we consider the solution of the whole system of equations combined with a block type preconditioner. The preconditioner is shown to be optimal in terms of number of iterations used by the GMRES method in the steady case, but not in the unsteady one. Another alternative presented is to use algebraic factorization methods of the Yosida type and decouple the calculation of velocity and pressure. A benchmark is also presented to access the numerical convergence properties of this type of methods in our context. Third, we extend the algorithms developed in the fixed domain case to the Arbitrary Lagrangian Eulerian framework. The issue of defining a high order ALE map is addressed. This allows to construct a computational domain that is described with curved elements. A benchmark using a direct method to solve the linear system or the Yosida-q methods is presented to show the convergence orders of the method proposed. Finally, we apply the developed method with an implicit fully coupled and semi-implicit approach, to solve a fluid-structure interaction problem for a simple 2D hemodynamics example.

Annalisa Quaini, Alfio Quarteroni

In this article we address the numerical simulation of fluid-structure interaction (FSI) problems featuring large added-mass effect. We analyze different preconditioners for the coupled system matrix obtained after space- time discretization and linearization of the FSI problem. The classical Dirichlet-Neumann preconditioner has the advantage of ``modularity'' because it allows to reuse existing fluid and structure codes with minimum effort (simple interface communication). Unfortunately, its performance is very poor in case of large added-mass effects. Alternatively, we consider two non-modular approaches. The first one consists in preconditioning the coupled system with a suitable diagonal scaling combined with an ILUT preconditioner. The system is then solved by a Krylov method. The drawback of this procedure is that the combination of fluid and structure codes to solve the coupled system is not straightforward. The second non-modular approach we consider is a splitting technique based on an inexact block-LU factorization of the linear FSI system. The resulting algorithm computes the fluid velocity separately from the coupled pressure-structure system at each iteration, reducing the computational cost. Independently of the preconditioner, the efficiency of semi-implicit algorithms (i.e., those that treat geometric and fluid nonlinearities in an explicit way) is highlighted and their performance compared to the one of implicit algorithms. All the methods are tested on three-dimensional blood-vessel systems. The algorithm combining the non-modular ILUT preconditioner with Krylov methods proved to be the fastest.

2008We discuss in this thesis the numerical approximation of fluid-structure interaction (FSI) problems with a particular concern (albeit not exclusive) on hemodynamics applications. Firstly, we model the blood as an incompressible fluid and the artery wall as an elastic structure. To solve the coupled problem, we propose new semi-implicit algorithms based on inexact block-LU factorization of the linear system obtained after the space-time discretization and linearization of the FSI problem. As a result, the fluid velocity is computed separately from the coupled pressure-structure velocity system at each iteration, hence reducing the computational cost. This approach leads to two different families of methods which extend to FSI problems schemes that were previously adopted for pure fluid problems. The algorithms derived from inexact factorization methods are compared with other schemes based on two preconditioners for the FSI system. The first one is the classical Dirichlet-Neumann preconditioner, which has the advantage of modularity (i.e. it allows to reuse existing fluid and structure codes with minimum effort). Unfortunately, its performance is very poor in case of large added-mass effect, as it happens in hemodynamics. Alternatively, we consider a non-modular approach which consists in preconditioning the coupled system with a suitable diagonal scaling combined with an ILUT preconditioner. The system is then solved by a Krylov method. The drawback of this procedure is the loss of modularity. Independently of the preconditioner, the efficiency of semi-implicit algorithms is highlighted. All the methods are tested on two and three-dimensional blood-vessel systems. The algorithm combining the non-modular ILUT preconditioner with Krylov methods proved to be the fastest. However, modular and inexact factorization based methods should not be disregarded because they can considerably benefit from code parallelization, unlike the ILUT-Krylov approach. Finally, we improve the structure model by representing the vessel wall as a linear poroelastic medium. Our non-modular approach and the partitioned procedures arising from a domain decomposition viewpoint are extended to fluid-poroelastic structure interactions. Their numerical performance are analyzed and compared on simplified blood-vessel systems.